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Background: Central Clearing

▶ Central clearing of standardized OTC derivatives has been one of the main
components of the G20 reform program after the global financial crisis (GFC) of
2007-2009 (Ghamami and Glasserman, 2017).2

▶ The Covid-19 crisis revealed that the secondary market for U.S. Treasuries can
become dysfunctional in part due to the constraints on the capacity of dealers
that intermediate this market (Duffie, 2020). Broadening central clearing
mandates in government securities markets has been one of the main elements of
the 2021 G30 reform program.

▶ Central clearing has the potential to reduce the interconnectedness of the financial
system and improve transparency. It can also help mitigate counterparty credit
risk through multilateral netting (Duffie and Zhu (2011); Cont and Kokholm
(2014)). Central clearing may also reduce the pressure on intermediaries’ balance
sheets (Baranova et al., 2023).

2References in this presentation have been hyperlinked.
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Background: Central Counterparties

▶ CCPs require effective governance, regulatory oversight, and highly robust risk
management frameworks. Otherwise, increased use of CCPs may create financial
stability risks (Bernanke (2011); Tucker (2014)). The failure of a systemically
important CCP can be disastrous.

▶ The right design and regulation of CCPs continue to generate debate among
industry participants, government officials, and the public.

▶ In 2019 and 2020, major buy-side and sell-side firms called for regulatory action to
make clearinghouses safer. The 2019-2020 industry paper consisted of a number
of recommendations. One of the main recommendations was: “requiring CCPs to
make material contributions of their own capital to the default waterfall in two
separate tranches.”
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Multilayered Default Waterfall
▶ The first layer of protection against default losses is provided by the initial margin

(IM) posted by the defaulting member.

▶ If default losses exceed the defaulting member’s IM, its prefunded default fund
(DF) assets are used to cover any additional losses. If losses exceed the defaulter’s
IM plus DF, the CCP makes a contribution to offset the remaining losses. This
CCP capital contribution is often referred to as skin-in-the-game (SITG), denoted
by S .

▶ DF assets of surviving members are used against potential remaining losses.
These losses can be mutualized and allocated across members proportional to
their DF contributions.

▶ Once the total DF is exhausted, the CCP may use different recovery mechanisms
to restore its funding resources. These include: (i) an additional capital
contribution by the CCP, denoted by S̃ ; (ii) additional capped DF contributions by
surviving members; and (iii) other recovery measures, such as variation margin
haircuts.
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Monolayer Default Waterfall

▶ We also analyze the monolayer default waterfall where the IM pool is used for loss
mutualization as a separate layer of DF does not exist in addition to IM in some
CCPs.

▶ This case is important as some of the systemically important securities CCPs in
the U.S. operate under this structure. The broader central clearing proposal in the
U.S. may take place under the monolayer default waterfall at the Fixed Income
Clearing Corporation (FICC).

▶ Large derivatives CCPs do not mutualize the pool of IM to cover defaulting
member losses. It is the default fund, the layer of collateral collected in addition
to IM, that can be mutualized to cover losses.
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Goal of the Paper

▶ As shown in recent surveys (Thiruchelvam (2022); Walker (2023)): (i) SITG is
often a very small fraction of member prefunded resources. For instance, SITG is
1 percent of the default fund at LCH for interest rate swaps; (ii) SITG levels vary
widely across CCPs; and (iii) policymakers do not have a quantitative
methodology for specifying SITG and evaluating its sufficiency.

▶ The goal of our research is to address these shortcomings.

▶ We introduce a robust SITG design framework. Unlike bank regulation, CCP
regulation is mostly principles-based (Ghamami, 2015). Capital regulation of
CCPs may not adequately correspond to their risk profiles. Our proposed
formulations of SITG can be viewed as risk-based lower bounds on minimum CCP
capital requirements.
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https://www.risk.net/regulation/7955130/boe-official-signals-tough-stance-on-ccp-skin-in-the-game
https://www.risk.net/risk-quantum/7956011/ccp-skin-in-the-game-still-dwarfed-by-member-contributions
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Risk Management Agency Problems
▶ CCPs can be viewed as counterparty credit risk insurance providers. The classical

moral hazard problem here is that members may be incentivized to take more
counterparty credit risk. A well-designed loss mutualization scheme and adequate
collateral requirements could mitigate this moral hazard problem.

▶ Given that default losses can be mutualized among surviving members, in the
absence of adequate levels of SITG, CCPs may not be incentivized to properly
monitor counterparty credit risk. CCP risk management practices could
subsequently become questionable. A well-designed SITG can mitigate this
variation of moral hazard.

▶ This agency problem can become subtle at member-owned CCPs. Drawing on the
work of Hart and Moore (1996) and Hansmann (2013), we show that managers at
a members’ cooperative may not be adequately incentivized to put in place robust
risk management frameworks. Member-owned CCPs could face collective
decision-making challenges that may lead to insufficient levels of SITG. This
problem can be exacerbated under CCPs with heterogeneous membership.
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https://academic.oup.com/oxrep/article-abstract/12/4/53/374236?redirectedFrom=fulltext
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2385882


Sketch of the Proposal & Summary of Our Findings

▶ Conditional on a member’s default, when S = 0, surviving member DF assets are
more exposed to losses compared to losses that the CCP could face under
member prefunded resources. We introduce incentive compatibility constraints
(ICCs) and formulate SITG to mitigate risk management moral hazard problems.

▶ S can be formulated as a percentage of total DF, denoted by D. Consider the
CCP’s tail exposure to each member conditional on its default. Suppose that
member 1 creates the largest tail exposure. The ratio of the CCP’s largest tail
exposure to aggregate tail exposures is called concentration ratio, c1. When

S = (1− c1)D,

some of the overarching ICCs are satisfied, and CCP-member risk management
incentives become more aligned.
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Sketch of the Proposal & Summary of Our Findings

▶ When S̃ = 0, member unfunded DF contributions are more exposed to losses
compared to CCP loss exposures. This can also distort risk management
incentives. The moral hazard problem can be mitigated by formulating S̃ that
satisfies a set of ICCs. Similar to S , S̃ can also be formulated as a percentage of
D.

▶ We use the threshold exceedances approach (McNeil et al., 2015) from extreme
value theory (EVT) to model the conditional distribution of losses in excess of IM
by the Pareto distribution. This produces our SITG design framework in its most
general form.

▶ Total SITG can also be expressed as a percentage of D. Our numerical studies
indicate that for realistic parameters, this leads to SITG levels above 15-20
percent of D. This in turn leads to estimates of lower bound for CCP equity
capital in terms of D.
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https://press.princeton.edu/books/hardcover/9780691166278/quantitative-risk-management


Summary of Our Findings
▶ Monolayer CCPs may need to hold significantly higher levels of SITG to mitigate

risk management agency problems. We can approximate the ratio of the
monolayer CCP SITG to the multilayered CCP SITG under similar ICCs. This
ratio is roughly equal to the ratio of total IM to total DF under the multilayered
default waterfall. In practice, IM can be 10 times or more larger than DF.

▶ FICC’s capital contribution is less than 1 percent of its members’ prefunded
resources. Our results indicate that higher levels of SITG may be required to
mitigate potential risk management incentive distortions.3

▶ Our findings have also implications for the adequacy of bank capital requirements
for exposure to CCPs. Our numerical studies show that CCP risk capital rules can
be improved as central clearing risks may be underestimated in the current
regulatory regime.

3Woodall (2021) has documented that: “Its $61 million contribution represented 0.14% of total
prefunded resources. With 208 members as of end-September, the average individual clearing member
contribution was $208 million.”
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https://www-risk-net.proxy.library.nyu.edu/risk-quantum/7730366/skin-in-the-game-of-top-ccps-varies


Tail Exposures

▶ Consider a CCP that clears transactions in an asset class for N members indexed
by i = 1, ...,N. Ui represents the exposure of the CCP to member i over a given
risk horizon. Ui captures in part member i ’s portfolio value changes over the risk
horizon.

▶ Member i contributes an initial margin Mi to the CCP. Mi is a a quantile of Ui for
confidence level 1− q; q ≤ 0.01. The CCP’s exposure to member i net IM is
(Ui −Mi )

+ = max(Ui −Mi , 0). The magnitude of this exposure in extreme but
plausible scenarios is modeled using a risk measure ρ associated with (Ui −Mi )

+

at confidence level 1− qD ,

Ei = ρqD

(
(Ui −Mi )

+
)
,

where qD < q. Di represents the contribution of member i to DF, and D denotes
D =

∑N
i=1Di , the size of the total DF.
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Default Fund

▶ Regulatory guidelines require that DF covers potential losses incurred due to a
given number of member defaults, at least one and often two for systemically
important derivatives CCPs. Denoting by E (i) the ith the largest exposure,
cover-one DF leads to a prefunded default fund given by,

D = max (Ei , i = 1..N) = E (1).

Cover-two DF is intended to cover the simultaneous default of two members that
would jointly create the CCP’s largest (tail) exposure. Cover-two DF can be
formulated as D = E (1) + E (2).

▶ Some derivatives CCPs allocate DF to members proportional to tail exposures,

Di = D
Ei∑N
j=1 Ej

.
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Capital Contribution to the Default Waterfall

In the absence of SITG regulation, investor-owned CCPs may not be incentivized to
make capital contributions to the default waterfall. Conditional on the default of
member j , the loss to the CCP can be written as

L = min

{
(Uj −Mj − Dj)

+,S

}
+min

{
(Uj −Mj − D − S)+, S̃

}
. (1)

V and ϕ denote the CCP’s average clearing volume over a given period of time and
the clearing fee. The CCP’s expected net profit can then be approximated by

ϕV − E [L]. (2)

The CCP maximizes expected net profits by choosing optimal levels of S and S̃ . In the
absence of capital constraints, the CCP solves this problem by setting S = S̃ = 0.
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Skin in the Game: First Layer

▶ If member j defaults, the potential loss to the DF assets of a non-defaulting
member can be written as

Lji = Di min

(
(Uj −Mj − Dj − S)+

D − Dj
, 1

)
. (3)

When S = 0, the probability that non-defaulting members take a loss is larger
than qD ,

P(Uj > Mj + D
Ej∑N

k=1 Ek

) ≥ P(Uj > Mj + Ej) = qD .

In short, for any i ̸= j , setting S = 0, gives P(Lji > 0) ≥ qD .

▶ Conditional on the default of j , when S = 0, the potential loss to the CCP in the
presence of IM and DF is Lj0 = (Uj −Mj − D)+.
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Skin in the Game: First Layer
Since P(Lj0 > 0) ≤ qD , when S = 0, members are more likely than the CCP to incur
losses

P(Lji > 0) ≥ qD ≥ P(Lj0 > 0).

This moral hazard problem can be mitigated by formulating S that satisfies the
following ICC

P(Lji > 0) ≤ qD . (4)

Given that

P(L1i > 0) = P(U1 −M1 > D1 + S), and P(L10 > 0) = P(U1 −M1 > D),

setting S = D − D1 gives

P(L1i > 0) = P(L10 > 0) = qD . (5)

S = (1− c1)D aligns large counterparty default loss probabilities. Also, under the
EVT-based framework, qD becomes an upper bound on member loss probabilities, i.e.,
ICC (4) will hold.

P(Lji > 0) ≤ qD . (6)
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Skin in the Game: Second Layer
▶ S̃ can be viewed as a buffer against losses to unfunded DF contributions.

Conditional on j ’s default, total loss to i ’s prefunded and unfunded DF becomes

L̃ji = Lji +

(
Uj −Mj − S − D − S̃

)+ Di

D − Dj
. (7)

When unfunded default funds are capped by a multiple of Di , βDi ; β > 0, the
second term on the right side above is replaced with the minimum of it and βDi .
We have P(L̃ji > Di ) = P(Uj −Mj > D + S + S̃).

▶ Consider a target loss probability π̃; π̃ < qD . S̃ is formulated to satisfy the
following ICC

P(L̃ji > Di ) ≤ π̃. (8)

S and S̃ satisfy the overarching ICCs (4) and (8).
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Skin in the Game: Second Layer
▶ Conditional on j ’s default, when S̃ = 0, the CCP’s potential loss in excess of S

and prefunded and unfounded resources is

L̃j0 =
(
Uj −Mj − D − S − β(D − Dj)

)+
.

So, when S̃ = 0, we have P(L̃ji > Di ) > P(L̃j0 > 0). π̃ will be chosen such that
ICC (8) mitigates this moral hazard problem.

▶ Suppose that π̃ = P(L̃10 > 0). Setting S̃ = β(1− c1)D results in

P(L̃1i > Di ) = P(L̃10 > 0) = P
(
U1 −M1 > D + S + β(D − D1)

)
, (9)

i.e., it fully aligns CCP-member largest counterparty default risk management
incentives. Under our EVT-based framework,

P(L̃ji > Di ) ≤ P(L̃1i > Di ),

for j ̸= i , 1. So, (9) along with the above inequality gives ICC (8).
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Modeling Tail Risk
▶ We model the conditional distribution of losses in excess of IM as a Pareto

distribution whose tail exponent (shape parameter) α > 1 quantifies the heaviness
of the tail.

▶ The CCP’s exposure to member i conditional on its default satisfy

P(Ui −Mi > x | Ui ≥ Mi ) =

(
κi + x

κi

)−α

= 1− F (x ;κi , α),

where Mi = VaRq(Ui ), and F (x ;κ, α) = 1−
(
κ+ x

κ

)−α

is the Pareto distribution with the tail exponent α > 1 and scale parameter κ > 0.

▶ We assume that default loss distributions can be represented with some tail
exponent α and a scale parameter κi that may vary across members. This gives

Ei∑N
j=1 Ej

=
κi∑N
j=1 κj

.

This ratio is denoted by ci , (c1 is the concentration ratio).
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Pareto-based SITG: First Layer
▶ We show that

P(Lji > x) = q

[
1 +

(
(
q

qD
)1/α − 1

)(
c1 +

S

Ej
+

x

Ej

(1− cj)

ci

)]−α

.

So, the highest level of tail risk corresponds to the default of member 1,
P(Lji > x) ≤ P(L1i > x), for any j ̸= i , 1.

▶ We can compute S which corresponds to a given target loss probability π.
Suppose that π = P(L1i > 0). Solving for S yields,

P(L1i > 0) = π ⇐⇒ S =

(
( qπ )

1/α − 1

( q
qD

)1/α − 1
− c1

)
D. (10)

Our objective is to lower loss probabilities to achieve ICC (4). Setting π ≤ qD
satisfies this criterion. Aligning largest counterparty default loss probabilities is
achieved by choosing S such that π = P(L10 > 0) = qD . Doing so gives
S = (1− c1)D.
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Pareto-based SITG: Second Layer
▶ The likelihood that the loss to the CCP exceeds S and members prefunded and

unfunded DF takes its maximum conditional on the default of member 1.
Similarly, the probability that the loss to a nondefaulting member exceeds its
prefunded DF assets is largest conditional on the default of member 1.

▶ Given our formulation of S with π ≤ qD , we can specify S̃ that corresponds to a
target loss probability π̃. Suppose that π̃ = P(L̃1i > Di ). Solving for S̃ gives

P(L̃1i > Di ) = π̃ ⇐⇒ S̃ =

(
( qπ̃ )

1/α − ( qπ )
1/α

( q
qD

)1/α − 1
+ c1 − 1

)
D, (11)

where π̃ < π ≤ qD . When π̃ is set as π̃ = P(L̃10 > 0), the above formulation
results in S̃ = β(1− c1)D.

▶ Designing S and S̃ with π and π̃ ensures that ICC (8) is satisfied,
P(L̃ji > Di ) ≤ P(L̃1i > Di ) < qD , for any j ̸= i , 1.
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Capital Regulation

▶ Our framework gives the following lower bound for minimum capital requirements,

S + S̃ =

[
( qπ̃ )

1/α − 1

( q
qD

)1/α − 1
− 1

]
D.

Recall that π = P(L1i > 0) and π̃ = P(L̃1i > Di ) satisfy π̃ < π ≤ qD < q.

▶ Total SITG below 15-20 percent of DF cannot be produced in the realistic part of
the parameter space. This contrasts with current practice.

▶ Huang (2019) estimates an average SITG of about USD 38 million and an
average IM of about USD 14 billion across 9-10 CCPs. When DF is 10 percent of
IM, SITG becomes 2.7 percent of DF. This level of SITG may not adequately
mitigate risk management incentive distortions.
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Monolayer Default Waterfall

▶ In the absence of SITG, the exposure of a monolayer CCP conditional on j ’s
default can be written as

Ľj0 = (Uj −M)+,

where M =
∑N

i=1Mi . To compare monolayer and multilayered waterfalls, we
(naturally) assume that Uj ’s are drawn from the same distribution under both

waterfall structures. Recall that Lj0 = (Uj −Mj − D)+. It is often the case that

P(Ľj0 > x) ≤ P(Lj0 > x) for x ≥ 0.

▶ Conditional on j ’s default, potential losses to the IM of i can be written as

Ľji = Mi min

(
(Uj −Mj − Š)+

M −Mj
, 1

)
,

in the scenario where member losses cannot exceed Mi .
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Comparing Monolayer and Multilayered Default Waterfalls
▶ Under the Pareto assumption, we have

P(Ľji > 0) = q

[
1 +

(
(
q

qD
)1/α − 1

)
Š

Ej

]−α

.

This implies that P(Ľji > 0) ≤ P(Ľ1i > 0) for any j ̸= i , 1.

▶ When Š = 0, we have P(Ľji > 0) = P(Uj > Mj) = q. Since

P(Ľj0 > 0) = P(Uj > Mj +
∑

i ̸=j Mi ), members can incur disproportionately larger
losses. To align largest counterparty default loss probabilities, the CCP should
contribute Š = M −M1 to the default waterfall,

P(Ľ1i > 0) = P(Ľ10 > 0). (12)

Condition (12) is analogous to ICC (5) that is satisfied under S = (1− c1)D in
the multilayered CCP.
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Higher SITG levels or restructuring the monolayer default waterfall (?)
Š = M −M1 can be written as

Š = (1− c1)M (13)

when Ui/σi ∼ T (0, ν) has a mean-zero Student- t distribution with ν > 1 degrees of
freedom. Under (13), the following ICC is satisfied,

P(Ľji > 0) ≤ P(Ľ10 > 0), (14)

for any j ̸= i , 1. We just provided incentive compatibility arguments initially used in
the design of SITG that led to S = (1− c1)D. In short, incentive compatibility
constraints require

Š =
M

D
S .

Capital contribution of the monolayer CCP may need to be several multiples of that of
a similar CCP with multilayered default waterfall.
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Member-Owned CCPs
Suppose that ψiVi represents member i ’s gross profit from its trades in a volume of Vi

that have been cleared through the CCP. Set V = V1 + V2 + ...+ VN . Suppose that
all members receive an equal share of the CCP’s profit. Then, conditional on the
default of j , member i ’s expected net profit can be written as

ϕV − E [L]

N − 1
+
(
ψiVi − E [L̃ji ]

)
,

the term inside the parentheses can be viewed as member i ’s consumer surplus.4 L̃ji is
the total loss to member i ’s prefunded and unfunded DF defined in (7). Member i
maximizes expected net profit by choosing optimal levels of S and S̃ ,

ϕV

N − 1
+ ψiVi −

(
E [L]

N − 1
+ E [L̃ji ]

)
. (15)

4In any market, total surplus can be viewed as the sum of total producer surplus and total
consumer surplus (Hart and Moore, 1996).
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Regulating SITG at Member-Owned CCPs

▶ Consider expected losses in (15). CCP managers’ expected loss E [L] can be
viewed as an increasing function of S and S̃ while member i ’s expected loss E [L̃ji ]

can be viewed as a decreasing function of S and S̃ . So, an optimal first and
second layer SITG could be positive.

▶ Member and CCP expected net profit functions highlight the adverse impact of
membership heterogeneity on SITG levels. E [L̃ji ] can be viewed as increasing
functions of Di . Since larger members contribute more to the DF, their optimal
levels of SITG can be larger than that of smaller members. Larger members would
vote for higher levels of SITG while smaller members would vote for lower SITG
levels. At a heterogeneous CCP, reaching a consensus on an optimal level of SITG
can become complicated as members with different levels of DF would vote for
different levels of SITG.5

5Note that control in the form of voting rights may be allocated according to a simple
one-member-one-vote rule.
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Concluding Remarks
▶ The proposed framework is grounded in ICCs that address risk management

agency problems. SITG formulations are simple and readily implementable using
data available to regulators. Comparing our SITG formulations with empirical
evidence, we conclude that SITG should be regulated, and that CCPs may need to
allocate more capital to default waterfalls.

▶ Resilience of CCPs that will be at the center of the UST market is of critical
importance. The first recommendation of G30 in 2021 was that the Federal
Reserve should create a Standing Repo Facility (SRF) that provides very broad
access to repo financing for UST securities.

▶ The SRF that was created in 2021 did not provide the very broad access due to
concerns about creating moral hazard problems that would increase systemic risks.
The G30 have suggested that this moral hazard could be mitigated by centrally
clearing repos provided by the SRF. Our investigation indicates that this agency
problem may be counteracted when CCP risk management agency problems are
mitigated effectively.
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Appendix
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Cover-n Case
▶ Total DF is represented by Ds,n = E1 + E2 + ...+ En. L

1
i ,n represents member i ’s

loss conditional on member 1’s default. Sn (S̃n) represents the first (second) layer
of SITG.

▶ We formulate Sn that correspond to the target loss probability πn = P(L1i ,n > 0).
The first layer of SITG is formulated according to

Sn =

[(
( q
πn
)1/α − 1

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
− c1

]
Ds,n,

and the second layer is formulated as

S̃n =

[(
( q
π̃n
)1/α − ( q

πn
)1/α

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
+ c1 − 1

]
Ds,n.

▶ π̃n is the target loss probability associated with S̃n, π̃n = P(L̃1i ,n > Di ,n). L̃
j
i ,n is

the total loss to i ’s prefunded and unfunded DF conditional on the default of j .
Member i ’s DF is denoted by Di ,n.
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Numerical Example

Figure: Total SITG, S + S̃ , as a fraction of default fund D for different values of parameters α, q, qD ,
and π̃.
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CCP Objective Function
Suppose that Et = S + S̃ + Es is the total capital of the investor-owned CCP.
Conditional on j ’s default, consider CCP’s loss in excess of members’ resources and Et ,

Le = (Uj −Mj − D − β(D − Dj)− Et)
+.

The private profit-seeking objective of the CCP would be to maximize

ϕV − E [L]− E [Le ]− c(Et)− cpQ(S , S̃ ,Es),

c(Et) is the social cost of capital, cp is the private cost of a CCP failure, and
Q(S , S̃ ,Es) is the probability of such a failure.6

Suppose that Et is set by regulators but the allocation of it to S , S̃ , and Es is left to
the CCP. Then, the CCP maximizes its objective by setting S = S̃ = 0.

6Greenwood et al. (2017) use similar assumptions to formulate the cost of capital and bank failure
in their setting.
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Optimal Capital Regulation

▶ Social welfare can be represented by

ϕV − E [L]− E [Le ]− c(Et)− csQ(S(π), S̃(π̃),Es), (16)

where S(π) can be viewed as a decreasing function of π, and given π, S̃(π̃) is a
decreasing function of π̃. Given members’ IM and DF assets, the social planner’s
objective would then be to find the optimum SITG and Es that maximize (16). If
the Pareto tail exponent, α, is also given, the social planner’s problem can be
equivalently viewed as finding the optimum π, π̃, and Es that maximize (16).
Optimal SITG can then correspond to target loss probabilities under which some
of the ICCs may be satisfied and some may not.

▶ SITG can be incorporated into policymakers’ improved objective function. S and
S̃ are linked to a set of incentive compatibility constraints under which some of
the CCP risk management agency problems can be mitigated.
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Client Clearing Implications

▶ That the CCP has small default loss exposure P(Lj0 > 0) ≤ qD < q, relies on the
assumption that DF has been sized adequately. These loss probabilities need not
remain small if DF does not capture client clearing risks properly. For instance, if
in estimating DF, the CCP’s exposure to member 1, U1, does not take into
account portfolios that member 1 has cleared for customers, P(L10 > 0) can
exceed qD and q.

▶ Suppose that member 1 defaults and its IM covers losses associated with member
1’s house account. Over a period of time till client accounts can be ported to a
non-defaulting member, the CCP may need to make payments to member 1’s
customers. If DF is not sized properly to cover losses that could arise due to
member 1’s default, the resilience of the CCP can be adversely impacted.

▶ The default waterfall should evolve proportionately to the risk profile of
the CCP. Increased client clearing should increase IM, DF, and SITG
adequately.
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