The Economics of Automated Market Making

Ciamac C. Moallemi
Graduate School of Business
Columbia University
email: ciamac@gsb.columbia.edu

Joint work with
Jason Milionis (Columbia CS), Tim Roughgarden (Columbia CS/a16z Crypto), and Anthony Lee Zhang (Chicago Booth).

Introduction

This Talk

Central topic today: automated market makers (AMMs)
A new mechanism for electronic trading (vs. limit order book, dark pool, batch auction, etc.)

Only tangentially relevant: cryptocurrencies, blockchain

Trading via an Order Book

Problem: Enable exchange of assets (e.g., ETH for USD and vice versa)
Traditional Solution: Central limit order book (e.g., NASDAQ, CME, Coinbase, etc.)

- Accept offers to buy/sell prescribed quantities at prescribed prices
- Match pairs of mutually acceptable orders

All remaining buy prices < all remaining sell prices

Issues:

1. Costly to store/compute "on-chain" Very high update rates
2. Requires active participation of market makers Illiquidity for "long-tail" assets

1	Type	Price (in USD/ETH)	Quantity (in ETH)
2	sell	1225	30
3	sell	1223	5
4	sell	1220	100
5	sell	1215	8
6	sell	1205	12
7	buy	1195	25
8	buy	1185	75
9	buy	1182	33
10	buy	1180	42

Automated Market Makers

Key Idea: [Buterin, Köppelman, Lu 2016; ...]

- "Liquidity providers" (LPs) supply pools of USD + ETH
- Market always willing to accept buy/sell orders at quoted price
- Automated quoting mechanism: price set by quantity of assets of each type Inspired by use in prediction markets [e.g., Pennock, Sami 2007] "Constant function market makers" (CFMMs)
- Benefit: LPs earn trading fees (\% fee)
- Minimal storage needs; Computations can be done quickly, typically via closed-form
- Primarily rely on passive liquidity providers

Economics of Liquidity Provision

Motivating questions:

- How can we measure the performance of liquidity providers in AMMs / CFMMs?
- How does performance depend on asset dynamics (e.g., volatility)? Pool characteristics (e.g., bonding curve, fee structure)? Blockchain characteristics (e.g., block rate)?
- How can we improve AMM design from the LP perspective?

Working papers:

- J. Milionis, C. C. Moallemi, T. Roughgarden, A. L. Zhang. Automated market making and loss-versus-rebalancing. Working paper. Initial version: August 2022. Revised: June 2023.
- J. Milionis, C. C. Moallemi, T. Roughgarden. Automated market making and arbitrage profits in the presence of fees. Working paper. Initial version: February 2023. Revised: May 2023.
- Available at https://moallemi.com/ciamac or on Arxiv

Contributions (1)

- Our main contribution is a "Black-Scholes Formula for AMMs"
- Like Black-Scholes, we analyze delta-hedged LP returns
- Short whatever amount of ETH your USD-ETH LP position holds, at any point in time:

$$
\text { Delta-Hedged LP P\&L }{ }_{T}=\underbrace{\mathrm{FEE}_{T}-\mathrm{LVR}_{T}}_{\text {Fees Minus LVR }}
$$

- "Loss-versus-rebalancing", LVR $_{T}$ ("lever"), arises from slippage: stale AMM prices are picked off by arbitrageurs ("searchers")

$$
\operatorname{LVR}_{T}=\frac{1}{2} \int_{0}^{T} \underbrace{\left|x^{* \prime}\left(P_{t}\right)\right|}_{\text {marginal liquidity quadratic variation }} \underbrace{\sigma_{t}^{2} P_{t}^{2} d t} \geq 0
$$

- Formula works well empirically
- Suggests improved AMM designs

Contributions (2)

- LVR derived assuming arbitrageurs pay no fees, trade continuously
- We further derive closed-form and asymptotic expressions for arbitrage profits with trading fees and discrete, Poisson block generation:

$$
\text { arb profits } \approx \mathrm{LVR} \times \underbrace{\frac{1}{1+\frac{\gamma}{\sigma \sqrt{\Delta t / 2}}}}_{\triangleq \mathrm{P}_{\text {trade }}}
$$

- In the fast block regime $(\Delta t \rightarrow 0)$, arb profits $=\Theta(\sqrt{\Delta t})$
- LVR \approx arb profits + fees paid by arbs to LPs

Loss-Versus-Rebalancing in Industry

Dan Robinson @
DEXes leak value to miners through three kinds of MEV:

1. Gas costs
2. Slippage/sandwiching
3. Loss-vs-rebalancing
Reduce any of these leaks, and you preserve more value for swappers
and LPs.
So each of these categories corresponds to a promising line of DEX
research.
5:03 PM - Dec 14, 2022

smg ${ }^{\circ}$

aspocialmec
PART Two of "LVR Reduction: The Biggest Open Problem in DeFi"
75 Wed, Aug 16
© 12 PM PST / 3 PM EST
Join @danrobinson, researcher @paradigm; Defi thinker/builder ©Ox94305; and SMG's @malleshpal and ©MaxResnick1 as they dive deeper into this challenging topic.

Literature Review

- Options Pricing / Market Microstructure

Black, Scholes 1973; Merton 1973; Carr, Madan 2002
Glosten, Milgrom 1985; ...
Budish, Cramton, Shim, 2015;

- Prediction Markets

Winkler 1969; Savage 1971; Hanson 2002
Chen, Pennock 2007;

- AMMs for Exchanges

Buterin, Köppelmann, Lu 2016
Angeris, Evans, Chitra 2020-2021
Capponi, Jia 2021; Lehar, Parlour 2021; Park 2021; Aoyagi, Ito 2021; Barbon, Ranaldo 2021; O’Neill 2022; Cartea, Drissi, Monga 2022; Nezlobin 2022; Dewey, Newbold 2023;

Background: Blockchain and Decentralized Finance

What is a Blockchain?

Blockchains provide generic mechanisms for trustless consensus about distributed state machines, i.e., they are (decentralized) computers

- A general-purpose computer ("Turing complete")
- No single owner or operator ("computer-in-the-sky", a public good)
- Open access (anyone can use or deploy applications)
- Supports internal property rights (users can "own" data)

Intellectual origins of the modern blockchain:

- (Coöperative) distributed consensus
- Cryptographic primitives (e.g., hash functions, public key cryptography)
- Economics / incentives / game theory

Decentralized Computers

Bitcoin (2009)

- state transitions: payments
- consensus: account balances of a distributed ledger

Decentralized Computers

Bitcoin (2009)

- state transitions: payments
- consensus: account balances of a distributed ledger

Ethereum (2015) (and most modern blockchains)

- state transitions: Turing complete! "smart contracts" = arbitrary computer programs
- consensus: shared memory of a distributed global virtual machine

But Very Slow and Expensive Computers!

Raspberry PI

- Hobbyist computer
- Unit cost: \$45 (retail)
- CPU performance: 5000x

Ethereum

- Global virtual machine
- Operating cost: ~\$20M/day
- CPU performance: $1 \times$

Rise of Decentralized Finance

Top 20 Ethereum smart contracts
Measured by resource consumption (normalized gas)

image credit: @caseykcaruso / https://gasguzzlers.wtf

- Decentralized exchanges (DEXs) (AMMs / CFMMs) Uniswap, Balancer, Curve, Sushiswap
- Collateralized lending MakerDAO, Aave, Compound
- Stablecoins

MakerDAO, Tether, USDC

- Non-fungible tokens (NFTs) OpenSea

DEX Market Share in Crypto

Market Share of Volume All pairs/pools

Market Share of Volume All pairs/pools
 Data source: Kalko trade volume

image credit: Kaiko

- Volume on Uniswap exceeds that on Coinbase
- In excess of US\$1 trillion traded on Uniswap

Model

Market Model

- TL;DR: continuous time, Black-Scholes setup
- WLOG two assets: "risky" asset x (e.g., ETH), "numéraire" y (e.g., USD)
- WLOG risk-free rate $=0$
- $P_{t} \triangleq$ market price of risky asset, on infinitely deep centralized exchange (CEX) CEX is where price discovery occurs

Market Model

- $P_{t} \triangleq$ market price of risky asset (on infinitely deep centralized exchange/CEX)
- Returns given by

$$
\frac{P_{t+\Delta t}-P_{t}}{P_{t}} \approx N\left(\mu \Delta t, \sigma_{t}^{2} \Delta t\right)
$$

$$
\Leftrightarrow \quad \underbrace{\frac{d P_{t}}{P_{t}}}_{\text {instantaneous return }}=\underbrace{\mu}_{\text {drift }} \times d t+\underbrace{\sigma_{t}}_{\text {volatility }} \times \underbrace{d B_{t}}_{\text {Brownian increment }}
$$

Constant Function Market Makers

- Given bonding function f

Constant Function Market Makers

- Given bonding function f
- Example: Constant product market maker (CPMM, Uniswap V2) $f(x, y) \triangleq x y$

Constant Function Market Makers

- Given bonding function f
- Example: Constant product market maker (CPMM, Uniswap V2) $f(x, y) \triangleq x y$
- Suppose LPs contribute reserves $\left(x_{0}, y_{0}\right)$ to the pool such that $f\left(x_{0}, y_{0}\right)=L$

Constant Function Market Makers

- Given bonding function f
- Example: Constant product market maker (CPMM, Uniswap V2) $f(x, y) \triangleq x y$
- Suppose LPs contribute reserves $\left(x_{0}, y_{0}\right)$ to the pool such that $f\left(x_{0}, y_{0}\right)=L$
- Allow trades that maintain the invariant $f(x, y)=L$

Constant Function Market Makers

- Given bonding function f
- Example: Constant product market maker (CPMM, Uniswap V2) $f(x, y) \triangleq x y$
- Suppose LPs contribute reserves $\left(x_{0}, y_{0}\right)$ to the pool such that $f\left(x_{0}, y_{0}\right)=L$
- Allow trades that maintain the invariant $f(x, y)=L$
- $P_{\text {avg }}=\frac{y_{0}-y_{1}}{x_{1}-x_{0}}$

Constant Function Market Makers

- Slope yields spot price: $P=\frac{\partial f / \partial y}{\partial f / \partial x}$

Constant Function Market Makers

- Fees are collected

Proportional to traded quantity

- Example: (Uniswap V2)

30bp fee on contributed asset

CFMM Pool Value Function

Pool value function $V(P)$ is the monetary value of CFMM reserve holdings, when price is P, due to arbitrage:

$$
\begin{aligned}
V(P) \triangleq & \underset{(x, y) \in \mathbb{R}_{+}^{2}}{\operatorname{minimize}} \quad P x+y \\
& \text { subject to } \quad f(x, y)=L
\end{aligned}
$$

CFMM Pool Value Function

Pool value function $V(P)$ is the monetary value of CFMM reserve holdings, when price is P, due to arbitrage:

$$
\begin{aligned}
V(P) \triangleq \underset{(x, y) \in \mathbb{R}_{+}^{2}}{\operatorname{minimize}} & P x+y \\
& \text { subject to }
\end{aligned} \quad f(x, y)=L
$$

Assumption. An optimal solution $\left(x^{*}(P), y^{*}(P)\right)$ exists, and $V(\cdot)$ is twice continuously differentiable.

Example: Constant Product Market Maker

$$
\begin{aligned}
V(P) \triangleq & \underset{(x, y) \in \mathbb{R}_{+}^{2}}{\operatorname{minimize}} \quad P x+y \\
& \text { subject to }
\end{aligned} \quad f(x, y)=L
$$

Example. (Uniswap V2)

- Constraint set: $\left\{(x, y) \in \mathbb{R}_{+}^{2}: f(x, y) \triangleq x y=L\right\}$
- Demand curve: $\quad x^{*}(P)=L / \sqrt{P}, \quad y^{*}(P)=L \sqrt{P}$
- Pool value: $V(P)=P x^{*}(P)+y^{*}(P)=2 L \sqrt{P}$

Example: Constant Product Market Maker

Example. (Uniswap V2)

- Demand curve: $\quad x^{*}(P)=L / \sqrt{P}, \quad y^{*}(P)=L \sqrt{P}$
- Pool value: $V(P)=P x^{*}(P)+y^{*}(P)=2 L \sqrt{P}$

Remarks:

- $x^{*}(\cdot)$ is the LPs' passive demand curve for the risky asset
- $V(\cdot)$ is analogous to a "payoff function" for the pool reserves

- Setting is fully general to all passive market makers (including concentrated pools like Uniswap V3), smoothness is key requirement

Loss-Versus-Rebalancing

Market Participants

Stylized model, with two types of traders:

Market Participants

Stylized model, with two types of traders:

- Arbitrageurs:
- Continuously monitor the market
- Can trade in the CFMM, or frictionlessly on infinite depth CEX
- Hence, arb CFMM until prices equal to CEX
- For simplicity, assume arbs do not pay trading fees (we will revisit!)

Market Participants

Stylized model, with two types of traders:

- Arbitrageurs:
- Continuously monitor the market
- Can trade in the CFMM, or frictionlessly on infinite depth CEX
- Hence, arb CFMM until prices equal to CEX
- For simplicity, assume arbs do not pay trading fees (we will revisit!)
- Noise traders:
- Only trade on CFMM
- Trade for idiosyncratic reasons (e.g., convenience of executing on-chain)
- Do pay trading fees: cumulative fees FEE_{t}

Pool value lets us write LP P\&L as:

$$
\mathrm{LPP} \mathrm{P} \& \mathrm{~L}_{t}=V_{t}-V_{0}+\mathrm{FEE}_{t}
$$

where $V_{t} \triangleq V\left(P_{t}\right), \mathrm{FEE}_{t} \triangleq$ cumulative fees at t

Rebalancing Strategy

$$
\mathrm{LPP} \& \mathrm{~L}_{t}=\underbrace{V_{t}-V_{0}}_{\text {pool value change }}+\underbrace{\mathrm{FEE}_{t}}_{\text {accumulated fees }}
$$

- Decompose $V_{t}-V_{0}$ using the idea of rebalancing strategy
- Informally, the strategy makes same trades as CFMM, at external market prices

Rebalancing Strategy

$$
\mathrm{LP} \mathrm{P} \& \mathrm{~L}_{t}=\underbrace{V_{t}-V_{0}}_{\text {pool value change }}+\underbrace{\mathrm{FEE}_{t}}_{\text {accumulated fees }}
$$

- Decompose $V_{t}-V_{0}$ using the idea of rebalancing strategy
- Informally, the strategy makes same trades as CFMM, at external market prices
- Formally, it is is the self-financing trading strategy defined by:
- Initial holdings match the pool, i.e., $\left(x_{0}, y_{0}\right) \triangleq\left(x^{*}\left(P_{0}\right), y^{*}\left(P_{0}\right)\right)$
- Risky holdings continuously rebalanced to match the pool, i.e., $x_{t} \triangleq x^{*}\left(P_{t}\right)$
$R_{t} \triangleq$ rebalancing portfolio value

$$
\begin{aligned}
& \approx \underbrace{V_{0}}_{\text {initial value }}+\sum_{i=0}^{t / \Delta t-1} \underbrace{x^{*}\left(P_{i \Delta t}\right) \times\left(P_{(i+1) \Delta t}-P_{i \Delta t}\right)}_{\text {per period } \mathrm{P} \& \mathrm{~L}} \\
& =V_{0}+\int_{0}^{t} x_{s}^{*}\left(P_{s}\right) d P_{s}
\end{aligned}
$$

Loss vs. Rebalancing

Define loss-versus-rebalancing (LVR) as:

Intuitively: how much does V_{t} lose, compared to making same trades at market prices R_{t} ?

Loss vs. Rebalancing

Define loss-versus-rebalancing (LVR) as:

Intuitively: how much does V_{t} lose, compared to making same trades at market prices R_{t} ?
Theorem. (Milionis, Moallemi, Roughgarden, Zhang 2022) The LVR process is non-negative, non-decreasing, and predictable, and satisfies

$$
\operatorname{LVR}_{t}=\frac{1}{2} \int_{0}^{t} \underbrace{\left|x^{* \prime}\left(P_{s}\right)\right|}_{\text {marginal liquidity }} \underbrace{\sigma_{s}^{2} P_{s}^{2} d s}_{\text {quadratic variation }} \geq 0
$$

Note: LVR is different than "impermanent loss"!

Intuition: Slippage

- Suppose external prices changes from p to $p-d p$

Intuition: Slippage

- Suppose external prices changes from p to $p-d p$
- AMM buys quantity $d x$

Intuition: Slippage

- Suppose external prices changes from p to $p-d p$
- AMM buys quantity $d x$
- $p_{\mathrm{AMM}}=p-\frac{1}{2} d p$

Intuition: Slippage

- Suppose external prices changes from p to $p-d p$
- AMM buys quantity $d x$
- $p_{\mathrm{AMM}}=p-\frac{1}{2} d p$
- AMM loss/arb profit is

$$
\begin{aligned}
& \underbrace{d x\left(p-\frac{1}{2} d p\right)}_{\text {AMM price }}-\underbrace{d x(p-d p)}_{\text {external price }} \\
& =\frac{d x d p}{2}=\frac{1}{2}\left|\frac{d x}{d p}\right|(d p)^{2}=\frac{1}{2} \times\left|x^{* \prime}(p)\right| \times \sigma^{2} p^{2} d t
\end{aligned}
$$

since $(d p)^{2}=\sigma^{2} p^{2} d t$ is the quadratic variation

LP Return Decomposition

Adding in fees,

LP Return Decomposition

Adding in fees,

Like Black-Scholes, our decomposition corresponds to a tradable strategy!

- Simply delta-hedge the LP position!
- Long CFMM LP, short rebalancing portfolio, isolates $\mathrm{FEE}_{t}-\mathrm{LVR}_{t}$

LP Return Decomposition

Adding in fees,

Like Black-Scholes, our decomposition corresponds to a tradable strategy!

- Simply delta-hedge the LP position!
- Long CFMM LP, short rebalancing portfolio, isolates $\mathrm{FEE}_{t}-\mathrm{LVR}_{t}$

$$
\Rightarrow \quad \text { Hedged LP P\&L }{ }_{T}=\mathrm{FEE}_{T}-\mathrm{LVR}_{T}=\gamma \times \mathrm{VOLUME}_{T}-\int_{0}^{T} \frac{\sigma_{t}^{2} P_{t}^{2}}{2}\left|x^{* \prime}\left(P_{t}\right)\right| d t
$$

LP Return Decomposition

Adding in fees,

Like Black-Scholes, our decomposition corresponds to a tradable strategy!

- Simply delta-hedge the LP position!
- Long CFMM LP, short rebalancing portfolio, isolates $\mathrm{FEE}_{t}-\operatorname{LVR}_{t}$

$$
\Rightarrow \quad \text { Hedged LP P\&L }{ }_{T}=\mathrm{FEE}_{T}-\mathrm{LVR}_{T}=\gamma \times \mathrm{VOLUME}_{T}-\int_{0}^{T} \frac{\sigma_{t}^{2} P_{t}^{2}}{2}\left|x^{* \prime}\left(P_{t}\right)\right| d t
$$

Continuously hedged LP P\&L is variance-to-volume swap:

- Receive floating leg proportional to volume
- Pay floating leg of a (continuously sampled, liquidity weighted) variance swap

Example: Constant Product Market Maker

Example. (Uniswap V2)

- Constraint set: $\quad\left\{(x, y) \in \mathbb{R}_{+}^{2}: f(x, y) \triangleq x y=L\right\}$
- Pool value: $V(P)=2 L \sqrt{P} \quad$ Demand curve: $\quad x^{*}(P)=L / \sqrt{P}$
- Instantaneous LVR: $\frac{\sigma^{2} P^{2}}{2}\left|x^{* \prime}(P)\right|=\frac{L \sigma^{2}}{4} \sqrt{P}=\frac{\sigma^{2}}{8} V(P)$
- Constant LVR per dollar of pool reserves
(True of weighted geometric mean bonding functions, e.g., Balancer)

Example: Uniswap V2 WETH-USDC

Pairs \rightarrow USDC-ETH
(2) USDC-ETH Pair

91 USDC $=0.0005 \mathrm{ETH}(51.00)$
© $1 \mathrm{ETH}=1,892$ USDC (\$1,892)
Pair Stats
Total Liquidity
\$124,749,254
Volume (24hrs)
\$21,986,137
Fees (24hrs)
\$65,958
Pooled Tokens
(8) $62,360,470$ USDC
(c) $32,959 \mathrm{ETH}$
Liquidity Volume ETH/USDC USOC/ETH
\oplus Trade

Liquidity Volume ETHIUSDC USOCIEIH
im All
\$36m

Example: Uniswap V2 WETH-USDC

Palrs \rightarrow USDC-ETH
(2)) USDC-ETH Pair
© 1 USDC $=0.0005 \mathrm{ETH}(51.00)$
Pair Stats
Total Liquidity
\$124,749,254
Volume (24hrs)
\$21,986,137
Fees (24hrs)
\$65,958
Pooled Tokens
(9) $62,360,470$ USDC
(0) $32,959 \mathrm{ETH}$
© $1 \mathrm{ETH}=1,892$ USDC ($\$ 1,892$)

Liquidity Volume ETHIUSDC USOCIETH

Example: Uniswap V2 WETH-USDC

Pals \rightarrow USDC-ETH
(2) USDC-ETH Pair
© 1 USDC $=0.0005 \mathrm{ETH}$ ($\$ 1.00$)
© $1 \mathrm{ETH}=1,892$ USDC $(\$ 1,892)$
Pair Stats
Total Liquidity
\$124,749,254
Volume (24hrs)
\$21,986,137
Fees (24hrs)
\$65,958
Pooled Tokens
(9) $62,360,470$ USDC
(0) $32,959 \mathrm{ETH}$

Liquidity Volume ETHIUSDC USOCIETH

$$
\begin{aligned}
& \text { Naïve "yield" calculation: } \\
& \frac{\$ 66 \mathrm{~K} \text { fees (daily) }}{\$ 125 \mathrm{M}} \approx 19 \% \text { (annual) }
\end{aligned}
$$

Assuming volatility $\sigma=5 \%$ (daily), our model says:

Example: Uniswap V2 WETH-USDC

Pals \rightarrow USDC-ETH
(s)) USDC-ETH Pair
© 1 USDC $=0.0005 \mathrm{ETH}(51.00)$
Pair Stats
Total Liquidity
\$124,749,254
Volume (24hrs)
\$21,986,137
Fees (24hrs)
\$65,958
Poocea Tokens
(9) $62,360,470$ USDC
© $32,959 \mathrm{ETH}$
© 1 ETH = 1,892 USDC ($\$ 1,892$)
quidity Volume ETHIUSDC USOC/ETH

$$
\begin{aligned}
& \text { Naïve "yield" calculation: } \\
& \frac{\$ 66 \mathrm{~K} \text { fees (daily) }}{\$ 125 \mathrm{M}} \approx 19 \% \text { (annual) }
\end{aligned}
$$

Assuming volatility $\sigma=5 \%$ (daily), our model says:

Example: Uniswap V2 WETH-USDC

$$
\begin{aligned}
& \text { Naïve "yield" calculation: } \\
& \frac{\$ 66 \mathrm{~K} \text { fees (daily) }}{\$ 125 \mathrm{M}} \approx 19 \% \text { (annual) } \\
& \text { Our "yield" calculation: } \\
& \qquad \frac{\$ 66 \mathrm{~K}-\$ 39 \mathrm{~K}}{\$ 125 \mathrm{M}} \approx 8 \% \text { (annual) }
\end{aligned}
$$

Assuming volatility $\sigma=5 \%$ (daily), our model says:

$$
24 \mathrm{hr} \operatorname{LVR} \operatorname{cost}(\%)=\sigma^{2} / 8=3.125(\mathrm{bp}), \quad 24 \mathrm{hr} \operatorname{LVR} \operatorname{cost}(\$)=\$ 39 \mathrm{~K}
$$

Empirical Test

Empirical Test

Empirical Test

- LHS: Return of delta-hedged LP position (model-free!)
- LP P\& L_{t} : Directly measure pool value change $y_{t}+P_{t} x_{t}$, accounting for mints/burns
- $\int_{0}^{t} x^{*}\left(P_{s}\right) d P_{s}$: Approximate by delta-hedging AMM at different discrete time horizons

Empirical Test

- LHS: Return of delta-hedged LP position (model-free!)
- LP P\& L_{t} : Directly measure pool value change $y_{t}+P_{t} x_{t}$, accounting for mints/burns
- $\int_{0}^{t} x^{*}\left(P_{s}\right) d P_{s}$: Approximate by delta-hedging AMM at different discrete time horizons
- RHS: Fees minus LVR (uses our theory)
- FEE_{t} : Trade volume times fee rate, directly measured
- $\frac{\sigma_{t}^{2} P_{t}^{2}}{2}\left|x^{* \prime}\left(P_{t}\right)\right|=\sigma_{t}^{2} / 8 \times$ pool value for constant product MM Use same day 60 minute realized volatility for σ_{t}

Empirical Test

- LHS: Return of delta-hedged LP position (model-free!)
- LP P\& L_{t} : Directly measure pool value change $y_{t}+P_{t} x_{t}$, accounting for mints/burns
- $\int_{0}^{t} x^{*}\left(P_{s}\right) d P_{s}$: Approximate by delta-hedging AMM at different discrete time horizons
- RHS: Fees minus LVR (uses our theory)
- FEE_{t} : Trade volume times fee rate, directly measured
- $\frac{\sigma_{t}^{2} P_{t}^{2}}{2}\left|x^{* \prime}\left(P_{t}\right)\right|=\sigma_{t}^{2} / 8 \times$ pool value for constant product MM Use same day 60 minute realized volatility for σ_{t}

Questions:

- Is our analytic formula accurate?
- Is LPing attractive?

Volatility

Data set: Binance ETH-USDC prices

Pool Value

Data set: Uniswap V2 WETH-USDC pool (from Ethereum blockchain), Binance ETH-USDC prices

LP P\&L

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Hedged P\&L and LVR

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Hedged P\&L and LVR

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Hedged P\&L and LVR

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Returns

Data set: Uniswap V2 WETH-USDC pool (from Ethereum blockchain), Binance ETH-USDC prices

What If Arbitrageurs Pay Fees?

LVR and Arbitrage Profits

LVR = Arbitrage Profits
under the assumptions that:

- arbitrageurs able to trade continuously
\Rightarrow in reality: can only trade at discrete instances of block generation
- arbitrageurs do not pay fees
\Rightarrow in reality: AMMs have trading fees

Impact of Arbitrageur Fees

Red $=$ external market price

Impact of Arbitrageur Fees

Red $=$ external market price
Blue $=$ AMM pool price

Impact of Arbitrageur Fees

Red $=$ external market price
Blue $=$ AMM pool price
$X=$ block generation times

Impact of Arbitrageur Fees

Red $=$ external market price
Blue $=$ AMM pool price
$X=$ block generation times

Impact of Arbitrageur Fees

Red $=$ external market price
Blue $=$ AMM pool price
$X=$ block generation times

Model (NEW)

Additional characteristics:

- Block arrival times: Poisson process with mean Δt
- Uniform proportional fees: γ fraction (e.g., 30 bp)

Model (NEW)

Additional characteristics:

- Block arrival times: Poisson process with mean Δt
- Uniform proportional fees: γ fraction (e.g., 30 bp)
- $P_{t}=$ external market (CEX) price
- $\tilde{P}_{t}=$ implied AMM pool price
- $z_{t} \triangleq \log \left(P_{t} / \tilde{P}_{t}\right): \log$ mispricing between pool and external market

Evolution of the Mispricing Process

mispricing z_{t}

Evolution of the Mispricing Process

mispricing z_{t}

Evolution of the Mispricing Process (2)

- When a block arrives, the arb trades if $z_{t} \notin[-\gamma, \gamma]$ and pushes mispricing back to that boundary
- Otherwise,

$$
d z_{t}=d \log P_{t} / \tilde{P}_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d B_{t}
$$

- z_{t} is a jump diffusion process
- (WLOG) Assumption (symmetry): $\mu=\frac{\sigma^{2}}{2}$

Fees and Discrete Block Generation

- Assume block generation $\sim \operatorname{Poisson}\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time

Fees and Discrete Block Generation

- Assume block generation $\sim \operatorname{Poisson}\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time
- Arbs trade only at block generation times, perfect competition between arbs

Fees and Discrete Block Generation

- Assume block generation $\sim \operatorname{Poisson}\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time
- Arbs trade only at block generation times, perfect competition between arbs
- \Rightarrow When an arb arrives at time t, they trade myopically until there is zero marginal profit,

$$
z_{t}= \begin{cases}+\gamma & \text { if } z_{t-} \geq+\gamma \\ z_{t-} & \text { if } z_{t-} \in[-\gamma, \gamma] \\ -\gamma & \text { if } z_{t-} \leq-\gamma\end{cases}
$$

Fees and Discrete Block Generation

- Assume block generation $\sim \operatorname{Poisson}\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time
- Arbs trade only at block generation times, perfect competition between arbs
- When an arb arrives at time t, they trade myopically until there is zero marginal profit,

$$
z_{t}= \begin{cases}+\gamma & \text { if } z_{t-} \geq+\gamma \\ z_{t-} & \text { if } z_{t-} \in[-\gamma, \gamma] \\ -\gamma & \text { if } z_{t-} \leq-\gamma\end{cases}
$$

- Otherwise,

$$
d z_{t}=d \log P_{t} / \tilde{P}_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d B_{t}
$$

Fees and Discrete Block Generation

- Assume block generation $\sim \operatorname{Poisson}\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time
- Arbs trade only at block generation times, perfect competition between arbs
- \Rightarrow When an arb arrives at time t, they trade myopically until there is zero marginal profit,

$$
z_{t}= \begin{cases}+\gamma & \text { if } z_{t-} \geq+\gamma \\ z_{t-} & \text { if } z_{t-} \in[-\gamma, \gamma] \\ -\gamma & \text { if } z_{t-} \leq-\gamma\end{cases}
$$

- Otherwise,

$$
d z_{t}=d \log P_{t} / \tilde{P}_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d B_{t}
$$

- z_{t} is a jump diffusion process

Fees and Discrete Block Generation

- Assume block generation \sim Poisson $\left(\Delta t^{-1}\right), \Delta t \triangleq$ mean interblock time
- Arbs trade only at block generation times, perfect competition between arbs
- \Rightarrow When an arb arrives at time t, they trade myopically until there is zero marginal profit,

$$
z_{t}= \begin{cases}+\gamma & \text { if } z_{t-} \geq+\gamma \\ z_{t-} & \text { if } z_{t-} \in[-\gamma, \gamma] \\ -\gamma & \text { if } z_{t-} \leq-\gamma\end{cases}
$$

- Otherwise,

$$
d z_{t}=d \log P_{t} / \tilde{P}_{t}=\left(\mu-\frac{1}{2} \sigma^{2}\right) d t+\sigma d B_{t}
$$

- z_{t} is a jump diffusion process
- (WLOG) Assumption (symmetry): $\mu=\frac{1}{2} \sigma^{2}$

Stationary Distribution

Lemma. (Milionis, Moallemi, Roughgarden 2023) The mispricing process is ergodic, and under the symmetry assumption, the unique stationary distribution is given by:

Probability of Trade

$$
\mathrm{P}_{\text {trade }}=\frac{1}{1+\frac{\gamma}{\sigma \sqrt{\Delta t / 2}}}=\text { fraction of blocks with an arb trade }
$$

With $\sigma=5 \%$ (daily),

$\Delta t \backslash \gamma$	1 bp	5 bp	10 bp	30 bp	100 bp
10 min	96.7%	85.5%	74.7%	49.6%	22.8%
2 min	92.9%	$\mathbf{7 2 . 5 \%}$	56.9%	30.5%	11.6%
$\mathbf{1 2} \mathbf{~ s e c}$	$\mathbf{8 0 . 7 \%}$	$\mathbf{4 5 . 6 \%}$	$\mathbf{2 9 . 5 \%}$	$\mathbf{1 2 . 3 \%}$	$\mathbf{4 . 0 \%}$
2 sec	63.0%	25.4%	14.5%	5.4%	1.7%
50 msec	21.2%	5.1%	2.6%	0.9%	0.3%

Arbitrage Profits

- $\mathrm{ARB}_{T} \triangleq$ cumulative arbitrage profits over $[0, T]$
- $\overline{\mathrm{ARB}} \triangleq \lim _{T \rightarrow 0} \frac{\mathrm{E}\left[\mathrm{ARB}_{T}\right]}{T}=$ instantaneous intensity of arbitrage profits

Arbitrage Profits

- $\mathrm{ARB}_{T} \triangleq$ cumulative arbitrage profits over $[0, T]$
- $\overline{\mathrm{ARB}} \triangleq \lim _{T \rightarrow 0} \frac{\mathrm{E}\left[\mathrm{ARB}_{T}\right]}{T}=$ instantaneous intensity of arbitrage profits

Theorem. (Milionis, Moallemi, Roughgarden 2023) Under suitable technical assumptions, in the fast block regime, as $\Delta t \rightarrow 0$,

$$
\begin{aligned}
\overline{\mathrm{ARB}} & =\underbrace{\frac{\sigma^{2} P}{2} \times \frac{y^{* \prime}\left(P e^{-\gamma}\right)+y^{* \prime}\left(P e^{+\gamma}\right)}{2} \times \mathrm{P}_{\text {trade }}+o(\sqrt{\Delta t})}_{=\overline{\mathrm{LVR}}+o(\gamma) \text { for } \gamma \text { small }} \\
& \approx \overline{\mathrm{LVR}} \times \mathrm{P}_{\text {trade }}
\end{aligned}
$$

Arbitrage Profits

$$
\text { intensity of arb profits } \overline{\mathrm{ARB}} \approx \overline{\mathrm{LVR}} \times \underbrace{\frac{1}{1+\frac{\gamma}{\sigma \sqrt{\Delta t / 2}}}}_{\triangleq \mathrm{P}_{\text {trade }}}
$$

- Equivalent to a rescaling of time by $\mathrm{P}_{\text {trade }}$
- For small Δt (i.e., fast blocks), if fee rate $\gamma>0, \overline{\mathrm{ARB}}=\Theta(\sqrt{\Delta t})$
- Corollary: Faster blocks \Rightarrow less LP losses due to arbitrage
- Example: if $\Delta t=12$ seconds $\rightarrow 3$ seconds, arbitrage profits reduced by 50%
- Intuition: faster blocks create more intense competition between arbs
- Discontinuity: if fee rate $\gamma=0, \overline{\mathrm{ARB}} \approx \overline{\mathrm{LVR}}=\Theta(1)$

Fees Paid by Arbs

- $\mathrm{FEE}_{T}^{\mathrm{ARB}} \triangleq$ cumulative fees paid by arbitrageurs over $[0, T]$
- $\overline{\mathrm{FEE}}^{\mathrm{ARB}} \triangleq \lim _{T \rightarrow 0} \frac{\mathrm{E}\left[\mathrm{FEE}_{T}^{\mathrm{ARB}}\right]}{T}=$ instantaneous intensity of arbitrage fees

Fees Paid by Arbs

- $\mathrm{FEE}_{T}^{\mathrm{ARB}} \triangleq$ cumulative fees paid by arbitrageurs over $[0, T]$
- $\overline{\mathrm{FEE}}^{\mathrm{ARB}} \triangleq \lim _{T \rightarrow 0} \frac{\mathrm{E}\left[\mathrm{FEE}_{T}^{\mathrm{ARB}}\right]}{T}=$ instantaneous intensity of arbitrage fees

Theorem. (Milionis, Moallemi, Roughgarden 2023) Under suitable technical assumptions, in the fast block regime, as $\Delta t \rightarrow 0$,

$$
\begin{aligned}
\overline{\mathrm{FEE}}^{\mathrm{ARB}} & =\underbrace{\frac{\sigma^{2} P}{2} \times \frac{\left(1-e^{-\gamma}\right) y^{* \prime}\left(P e^{-\gamma}\right)+\left(e^{+\gamma}-1\right) y^{* \prime}\left(P e^{+\gamma}\right)}{2 \gamma}}_{=\mathrm{LVR}+o(\gamma) \text { for } \gamma \text { small }} \times\left(1-\mathrm{P}_{\text {trade }}\right)+o(1) \\
& \approx \overline{\mathrm{LVR}} \times\left(1-\mathrm{P}_{\text {trade }}\right)
\end{aligned}
$$

Fees and Discrete Block Generation

$$
\begin{aligned}
& \text { intensity of arb profits } \overline{\mathrm{ARB}} \approx \overline{\mathrm{LVR}} \times \mathrm{P}_{\text {trade }} \\
& \text { intensity of fees paid by arbs } \overline{\mathrm{FEE}}^{\mathrm{ARB}} \approx \overline{\mathrm{LVR}} \times\left(1-\mathrm{P}_{\text {trade }}\right) \\
& \overline{\mathrm{ARB}}+\overline{\mathrm{FEE}}^{\mathrm{ARB}} \approx \overline{\mathrm{LVR}}
\end{aligned}
$$

- LVR is "conserved", fees serve to divide LVR between profits earned by arbitrageurs and fees paid by arbitrageurs to LPs
- Our techniques can be applied to other fee structures!

Implications for AMM Design

Mitigating Arbitrage Profits

Arbitrage profits are a zero-sum cost paid to intermediaries, reducing arb profits will increase gains from trade and thus social welfare

Mitigating Arbitrage Profits

Arbitrage profits are a zero-sum cost paid to intermediaries, reducing arb profits will increase gains from trade and thus social welfare

```
Dan Robinson * 0
@danrobinson
DEXes leak value to miners through three kinds of MEV:
1. Gas costs
2. Slippage/sandwiching
3. Loss-vs-rebalancing
Reduce any of these leaks, and you preserve more value for swappers
and LPs.
So each of these categories corresponds to a promising line of DEX
research.


\section*{Mitigating Arbitrage Profits}

\section*{Faster Blockchains}
- Reduce losses to arbs potentially at the cost of less decentralization

\section*{Dynamic Fees}
- Adjust fees based on market conditions (e.g., volatility/variance/LVR)
- More complex fee rules (e.g., non-proportional fees)

\section*{Oracle AMMs}
- Incorporate external market prices into AMM quoted price

\section*{Auctions / Monetize LVR}
- Auction the right to arb the pool (e.g., first trade in every block) in exchange for compensation to LPs

\section*{There is Room for Innovation in Exchange Design!}


The rise of crypto markets and smart contracts has fueled innovation in exchange mechanisms.This article explores core market design principles and their tradeoffs.


Instead, the exchange waits for either fixed time intervals, or until some liquidity threshold is met (such as at least USS1 million of executable orders), FBAs were previously used in equity markets such as Taiwan and have been advocated by academics as a means of mitigating the so-called "HFT tax".

It's natural to think that all three types of exchanges could co-exist, competing for trades. However, this fragments liquidity and may prevent each exchange from getting the necessary diversity of trader types. So, there are both economic forces and social benefits to concentrating transactions on one exchange type for each asset class, leaving the other exchange types to pick up niche business. 娄
- R. Dewey, C. C. Moallemi, A. Brown. Free exchange is not free. Wilmott Magazine, September 2023.

\section*{End}

\section*{Loss Versus Rebalancing: Proof}
\[
\begin{array}{rl}
V(P) \triangleq \underset{(x, y) \in \mathbb{R}_{+}^{2}}{\operatorname{minimize}^{2}} & P x+y \\
\text { subject to } & f(x, y)=L
\end{array}
\]

\section*{Lemma.}
1. \(V^{\prime}(P)=x^{*}(P) \geq 0\)
2. \(V^{\prime \prime}(P)=x^{* \prime}(P) \leq 0\)

\section*{Proof.}
1. "Envelope Theorem": chain rule + first-order-conditions + implicit function theorem
\[
V^{\prime}(P)=\frac{d}{d P} \underbrace{\left\{P x^{*}(P)+y^{*}(P)\right\}}_{V(P)}=x^{*}(P)
\]
2. Pointwise minimum of linear functions is concave

\section*{Loss Versus Rebalancing: Proof}
\[
\begin{gathered}
V(P) \triangleq \underset{(x, y) \in \mathbb{R}_{+}^{2}}{\operatorname{minimize}} P x+y, \quad \text { subject to } f(x, y)=L \\
V^{\prime}(P)=x^{*}(P) \geq 0, \quad V^{\prime \prime}(P)=x^{* \prime}(P) \leq 0
\end{gathered}
\]
- By Itô's lemma:
\[
d V_{t}=V^{\prime}\left(P_{t}\right) d P_{t}+\frac{1}{2} V^{\prime \prime}\left(P_{t}\right)\left(d P_{t}\right)^{2}=x^{*}\left(P_{t}\right) d P_{t}+\frac{1}{2} x^{* \prime}\left(P_{t}\right) \sigma_{t}^{2} P_{t}^{2} d t
\]
- Compare rebalancing strategy:
\[
R_{t}=V_{0}+\int_{0}^{t} x_{s}^{*}\left(P_{s}\right) d P_{s}, \quad d R_{t}=x^{*}\left(P_{t}\right) d P_{t}
\]
- Difference is:
\[
d R_{t}-d V_{t}=-\frac{1}{2} x^{* \prime}\left(P_{t}\right) \sigma_{t}^{2} P_{t}^{2} d t
\]
- Intuition: LVR arises from Itô's lemma and concavity of \(V(P)\), which depends on marginal liquidity \(x^{* \prime}(P)\)

\section*{Doob-Meyer Interpretation}

Because of concavity/Jensen's Inequality,
\[
\begin{aligned}
\mathrm{E}^{\mathbb{Q}}\left[V_{t} \mid \mathcal{F}_{s}\right]= & \mathrm{E}^{\mathbb{Q}}\left[V\left(P_{t}\right) \mid \mathcal{F}_{s}\right] \leq V\left(\mathrm{E}^{\mathbb{Q}}\left[P_{t} \mid \mathcal{F}_{s}\right]\right)=V\left(P_{s}\right)=V_{s} \\
& \Rightarrow \text { pool value is a } \mathbb{Q} \text {-supermartingale }
\end{aligned}
\]

\section*{Doob-Meyer Interpretation}

Because of concavity/Jensen's Inequality,
\[
\begin{aligned}
\mathrm{E}^{\mathbb{Q}}\left[V_{t} \mid \mathcal{F}_{s}\right]= & \mathrm{E}^{\mathbb{Q}}\left[V\left(P_{t}\right) \mid \mathcal{F}_{s}\right] \leq V\left(\mathrm{E}^{\mathbb{Q}}\left[P_{t} \mid \mathcal{F}_{s}\right]\right)=V\left(P_{s}\right)=V_{s} \\
& \Rightarrow \text { pool value is a } \mathbb{Q} \text {-supermartingale }
\end{aligned}
\]

The Doob-Meyer Decomposition yields a unique decomposition of a supermartingale \(V_{t}=M_{t}-A_{t}\) where:
- \(M_{t}\) is a martingale
- \(A_{t}\) is a predictable, increasing process with \(A_{0}=0\) (the "compensator")

Here,
\[
M_{t}=R_{t}, \quad A_{t}=\mathrm{LVR}_{t}
\]

\section*{Option Pricing Interpretation}
\[
\mathrm{LPP} \& \mathrm{~L}_{t}=\underbrace{\mathrm{FEE}_{t}}_{\text {accumulated fees }}+\underbrace{V_{t}-V_{0}}_{\begin{array}{c}
\text { change in pool } \\
\text { reserve value }
\end{array}}=\underbrace{\int_{0}^{t} x^{*}\left(P_{s}\right) d P_{s}}_{\text {rebalancing P\&L }}+\underbrace{\mathrm{FEE}_{t}-\mathrm{LVR}_{t}}_{\text {fees minus LVR }}
\]

Suppose we hold fixed an investment in a CFMM over \([0, T]\). What is the fair value?

\section*{Option Pricing Interpretation}
\[
\mathrm{LPP} \& \mathrm{~L}_{t}=\underbrace{\mathrm{FEE}_{t}}_{\text {accumulated fees }}+\underbrace{V_{t}-V_{0}}_{\begin{array}{c}
\text { change in pool } \\
\text { reserve value }
\end{array}}=\underbrace{\int_{0}^{t} x^{*}\left(P_{s}\right) d P_{s}}_{\text {rebalancing P\&L }}+\underbrace{\mathrm{FEE}_{t}-\mathrm{LVR}_{t}}_{\text {fees minus LVR }}
\]

Suppose we hold fixed an investment in a CFMM over \([0, T]\). What is the fair value?


\section*{Option Pricing Interpretation}


Suppose we hold fixed an investment in a CFMM over \([0, T]\). What is the fair value?
\[
\mathrm{E}^{\mathbb{Q}}\left[\mathrm{LP} \mathrm{P} \& \mathrm{~L}_{t}\right]=\underbrace{\mathrm{E}^{\mathbb{Q}}\left[\mathrm{FEE}_{t}\right]}_{\begin{array}{c}
\text { value of } \\
\text { accumulated fees }
\end{array}}+\underbrace{\mathrm{E}^{\mathbb{Q}}\left[V\left(P_{t}\right)\right]}_{\begin{array}{c}
\text { future value } \\
\text { of reserves }
\end{array}}-\underbrace{V\left(P_{0}\right)}_{\begin{array}{c}
\text { intrinsic current value } \\
\text { of reserves }
\end{array}}=\mathrm{E}^{\mathbb{Q}}\left[\mathrm{FEE}_{t}\right]-\underbrace{\mathrm{E}^{\mathbb{Q}}\left[\mathrm{LVR}_{t}\right]}_{\text {time value }}
\]
- \(\mathrm{E}^{\mathbb{Q}}\left[\mathrm{LVR}_{t}\right]\) is the fair time value of the option premium associated with the liquidity demand curve \(x^{*}(\cdot) /\) concave payoff \(V(\cdot)\)
- LPs pre-commit to a liquidity curve / concave payoff, LPs receive fee income instead of an option premium
- Alternative viewpoint (vs. arb profits)

\section*{Option Pricing Interpretation}
\[
V\left(P_{T}\right)-V\left(P_{0}\right)=R_{T}-R_{0}-\mathrm{LVR}_{T}=\int_{0}^{T} x^{*}\left(P_{t}\right) d P_{t}-\int_{0}^{T} \frac{\sigma_{t}^{2} P_{t}^{2}}{2}\left|x^{* \prime}\left(P_{t}\right)\right| d t
\]

Three ways to get exposure to volatility over the period [ \(0, T\) ] [Carr, Madan 2002]:
- Static terminal payoff: pool reserves \(V\left(P_{T}\right)-V\left(P_{0}\right)\)
- Dynamic trading (delta hedging): rebalancing strategy \(R_{T}-R_{0}\)
- Variance swap: LVR \(_{T}\)

\section*{Other Benchmarks / Impermanent Loss}

Consider an alternative benchmark:
- Initial holdings match the pool, i.e., \(\left(x_{0}^{\mathrm{HODL}}, y_{0}^{\mathrm{HODL}}\right) \triangleq\left(x^{*}\left(P_{0}\right), y^{*}\left(P_{0}\right)\right)\)
- Risky holdings held constant \(x_{t}^{\mathrm{HODL}} \triangleq x^{*}\left(P_{0}\right)\)
- \(\mathrm{IL}_{t} \triangleq \underbrace{x_{0}^{\mathrm{HODL}} P_{t}+y_{0}^{\mathrm{HODL}}}-V_{t}=\) "impermanent loss" or loss-versus-holding HODL value

\section*{Other Benchmarks / Impermanent Loss}

Consider an alternative benchmark:
- Initial holdings match the pool, i.e., \(\left(x_{0}^{\mathrm{HODL}}, y_{0}^{\mathrm{HODL}}\right) \triangleq\left(x^{*}\left(P_{0}\right), y^{*}\left(P_{0}\right)\right)\)
- Risky holdings held constant \(x_{t}^{\mathrm{HODL}} \triangleq x^{*}\left(P_{0}\right)\)
- \(\mathrm{IL}_{t} \triangleq \underbrace{x_{0}^{\mathrm{HODL}} P_{t}+y_{0}^{\mathrm{HODL}}}_{\text {HODL value }}-V_{t}=\) "impermanent loss" or loss-versus-holding

HODL value
Then,
\[
\mathrm{IL}_{t}=\mathrm{LVR}_{t}+\int_{0}^{t}\left[x_{0}^{\mathrm{HODL}}-x^{*}\left(P_{s}\right)\right] d P_{s}
\]
- Ex ante: \(\mathbb{E}^{\mathbb{Q}}\left[\mathrm{IL}_{t}\right]=\mathrm{E}^{\mathbb{Q}}\left[\mathrm{LVR}_{t}\right]\), i.e., same "market price"
- Ex post: IL conflates adverse selection (LVR) with market risk
- The rebalancing portfolio is the unique choice of benchmark relative to which losses are predictable and non-decreasing
("super-replicating portfolio", compensator in Doob-Meyer Decomposition)

\section*{Example: Uniswap V3}

Example. (Uniswap V3 Range Order)
- Consider a single range order over \(\left[P_{a}, P_{b}\right]\) with liquidity \(L\)
- Pool value, for \(P \in\left[P_{a}, P_{b}\right]\) :
\[
V(P)=L\left(2 \sqrt{P}-P / \sqrt{P_{b}}-\sqrt{P_{a}}\right)=L \sqrt{P}\left(\frac{\sqrt{P_{b}}-\sqrt{P}}{\sqrt{P_{b}}}+\frac{\sqrt{P}-\sqrt{P_{a}}}{\sqrt{P}}\right)
\]
- Instantaneous LVR: \(\quad \ell(\sigma, P)=\frac{L \sigma^{2}}{4} \sqrt{P} \Rightarrow\) same as before
- Instantaneous LVR per dollar of reserves can be arbitrarily high over a narrow range
\[
\lim _{\left|P_{b}-P_{a}\right| \rightarrow 0} \frac{\ell(\sigma, P)}{V(P)}=+\infty
\]```

