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Introduction




This Talk

Central topic today: automated market makers (AMMs)
A new mechanism for electronic trading
(vs. limit order book, dark pool, batch auction, etc.)

Only tangentially relevant: cryptocurrencies, blockchain




Trading via an Order Book

Problem: Enable exchange of assets (e.g., ETH for USD and vice versa)

Traditional Solution: Central limit order book (e.g., NASDAQ, CME, Coinbase, etc.)

e Accept offers to buy/sell prescribed quantities at prescribed prices

e Match pairs of mutually acceptable orders

All remaining buy prices < all remaining sell prices

Issues:

1.

Costly to store/compute “on-chain”
Very high update rates

. Requires active participation of market makers

Illiquidity for “long-tail” assets
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Automated Market Makers

Key ldea: [Buterin, Képpelman, Lu 2016; ..]
e “Liquidity providers” (LPs) supply pools of USD + ETH

e Market always willing to accept buy/sell orders at quoted price

Automated quoting mechanism: price set by quantity of assets of each type
Inspired by use in prediction markets [e.g., Pennock, Sami 2007]
“Constant function market makers”" (CFMMs)

Benefit: LPs earn trading fees (% fee)

Minimal storage needs; Computations can be done quickly, typically via closed-form

Primarily rely on passive liquidity providers




Economics of Liquidity Provision

Motivating questions:
e How can we measure the performance of liquidity providers in AMMs / CFMMs?

e How does performance depend on asset dynamics (e.g., volatility)? Pool characteristics
(e.g., bonding curve, fee structure)? Blockchain characteristics (e.g., block rate)?

e How can we improve AMM design from the LP perspective?
Working papers:

e J. Milionis, C. C. Moallemi, T. Roughgarden, A. L. Zhang. Automated market making

and loss-versus-rebalancing. Working paper. Initial version: August 2022. Revised: June
2023.

¢ J. Milionis, C. C. Moallemi, T. Roughgarden. Automated market making and arbitrage
profits in the presence of fees. Working paper. Initial version: February 2023. Revised:
May 2023.

¢ Available at https://moallemi.com/ciamac or on Arxiv
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Contributions (1)

o Qur main contribution is a “Black-Scholes Formula for AMMs”

e |ike Black-Scholes, we analyze delta-hedged LP returns

e Short whatever amount of ETH your USD-ETH LP position holds, at any point in time:

Delta-Hedged LP P&L,; = FEE;r — LVR
—_——
Fees Minus LVR

o “Loss-versus-rebalancing”, LVRy (“lever”), arises from slippage: stale AMM prices are
picked off by arbitrageurs (“searchers™)

T
WRr=1 [ (R) R 20
0 ——— ~——
marginal liquidity quadratic variation
e Formula works well empirically

e Suggests improved AMM designs




Contributions (2)

LVR derived assuming arbitrageurs pay no fees, trade continuously

We further derive closed-form and asymptotic expressions for arbitrage profits with
trading fees and discrete, Poisson block generation:

arb profits ~ LVR x

In the fast block regime (At — 0), arb profits = © (v At)
LVR = arb profits + fees paid by arbs to LPs




Loss-Versus-Rebalancing in Industry

2! Dan Robinson
iy

DEXes leak value to miners thro ree kinds of MEV:
1. Gas costs

2. Slippage/sandwiching

3. Loss-vs-rebalancing

Reduce any of these leaks, and you preserve more value for swappers
and LPs.

So each of these categories corresponds to a promising line of DEX
research.
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LVR Reduction:
The Biggest Open Problem in DeFi
(Part One)
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Literature Review
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e AMMs for Exchanges
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Dewey,Newbold 2023; ...




Background: Blockchain and Decentralized Finance




What is a Blockchain?

Blockchains provide generic mechanisms for trustless consensus about distributed state
machines, i.e., they are (decentralized) computers

o A general-purpose computer (“Turing complete”)
¢ No single owner or operator (“computer-in-the-sky”, a public good)
e Open access (anyone can use or deploy applications)

e Supports internal property rights (users can “own” data)

Intellectual origins of the modern blockchain:
o (Cooperative) distributed consensus
e Cryptographic primitives (e.g., hash functions, public key cryptography)

e Economics / incentives / game theory




Decentralized Computers

Bitcoin (2009)
e state transitions: payments

e consensus: account balances of a distributed ledger




Decentralized Computers

Bitcoin (2009)
e state transitions: payments

e consensus: account balances of a distributed ledger

Ethereum (2015) (and most modern blockchains)
e state transitions: Turing complete! “smart contracts” = arbitrary computer programs

e consensus: shared memory of a distributed global virtual machine




But Very Slow and Expensive Computers!

Raspberry PI Ethereum

e Hobbyist computer e Global virtual machine
e Unit cost: $45 (retail) e Operating cost: ~$20M/day
e CPU performance: 5000x e CPU performance: 1x

credit: Nicholas Weaver




Rise of Decentralized Finance
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Top 20 Ethereum smart contracts
Measured by resource consumption (normalized gas)

® Decentralized exchanges (DEXs)

MakerBag (AMMs / CFMMs)
Tether inch Uniswap, Balancer, Curve,
Sushiswap
OX Uniswap o Collateralized Iending

MakerDAO, Aave, Compound

® Stablecoins
MakerDAO, Tether, USDC

® Non-fungible tokens (NFTs)
OpenSea

2018
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DEX Market Share in Crypto
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e Volume on Uniswap exceeds that on Coinbase

o In excess of US$1 trillion traded on Uniswap

Apr 2022

May 2022

<PKAIKO

Jun 2022 Jul 2022




Model




Market Model

e TL;DR: continuous time, Black-Scholes setup
e WLOG two assets: “risky” asset = (e.g., ETH), “numéraire” y (e.g., USD)
e WLOG risk-free rate = 0

e P, = market price of risky asset, on infinitely deep centralized exchange (CEX)
CEX is where price discovery occurs




Market Model

® P = market price of risky asset (on infinitely deep centralized exchange/CEX)

e Returns given by

P, — P
AL T T N (uAt, 07 At)
Py
dP,
= -t = U xXdt + o X dBt
P; N7 —~— ~—
~~ drift volatility ~ Brownian increment

instantaneous return




Constant Function Market Makers

® Given bonding function f

flz,y) =1L
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Constant Function Market Makers

® Given bonding function f

e Example: Constant product market maker
(CPMM, Uniswap V2)

flzy) £y

® Suppose LPs contribute reserves (zo, yo) to
the pool such that f(xg,y0) = L

® Allow trades that maintain the invariant
flz,y) =1L

Yo — Y1
[ ] Pavg =
1 — o




Constant Function Market Makers

0f/0y
of /ox

® Slope yields spot price: P =




Constant Function Market Makers

® Fees are collected
Proportional to traded quantity

e Example: (Uniswap V2)
30bp fee on contributed asset




CFMM Pool Value Function

Pool value function V(P) is the monetary value
of CFMM reserve holdings, when price is P, due to
arbitrage:

V(P)£ minimize Px+y
(w,y)ERZ

subject to  f(z,y) =1L




CFMM Pool Value Function

Pool value function V(P) is the monetary value
of CFMM reserve holdings, when price is P, due to
arbitrage:

V(P)£ minimize Px+y
(z,y)€RT.

subject to  f(z,y) =1L

slope = —P

Assumption. An optimal solution (z*(P),y*(P)) exists, and V (-) is twice continuously differentiable.




Example: Constant Product Market Maker

V(P) £ minimize Px+y
(z,y)ERZ

subject to  f(x,y) =L
Example. (Uniswap V2)
e Constraint set: {(:x,y) ER? ¢ f(z,y) 2oy = L}
e Demand curve: z*(P) = L/VP, y*(P)=LJP
e Pool value: V(P) = Pz*(P) + y*(P) = 2L\/P




Example: Constant Product Market Maker

Example. (Uniswap V2)
e Demand curve: z*(P) = L/\/P, y*(P)=L\VP

e Pool value: V(P) = Pz*(P) + y*(P) = 2LV/P

Remarks: 2*(P) V(P)
e 1*(-) is the LPs’ passive demand
curve for the risky asset L/VP
e V(-) is analogous to a “payoff 2LVP
function” for the pool reserves

e Setting is fully general to all passive
market makers (including
concentrated pools like Uniswap V3),
smoothness is key requirement




Loss-Versus-Rebalancing
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Stylized model, with two types of traders:
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Stylized model, with two types of traders:

e Arbitrageurs:
e Continuously monitor the market
e Can trade in the CFMM, or frictionlessly on infinite depth CEX
* Hence, arb CFMM until prices equal to CEX
* For simplicity, assume arbs do not pay trading fees (we will revisit!)




Market Participants

Stylized model, with two types of traders:

e Arbitrageurs:

e Continuously monitor the market

e Can trade in the CFMM, or frictionlessly on infinite depth CEX

* Hence, arb CFMM until prices equal to CEX

* For simplicity, assume arbs do not pay trading fees (we will revisit!)
¢ Noise traders:

* Only trade on CFMM
* Trade for idiosyncratic reasons (e.g., convenience of executing on-chain)
* Do pay trading fees: cumulative fees FEE;

Pool value lets us write LP P&L as:
LP P&L; =V, — Vy + FEE;

where V; 2 V(P;), FEE; = cumulative fees at ¢




Rebalancing Strategy

LPP&L, = V,—V, + FEE
—— ~—~—~
pool value change  accumulated fees

® Decompose V; — Vj using the idea of rebalancing strategy

® Informally, the strategy makes same trades as CFMM, at external market prices




Rebalancing Strategy

LPP&L, = V,—Vy + FEE,
—— ~—~—~
pool value change  accumulated fees
® Decompose V; — Vj using the idea of rebalancing strategy
® Informally, the strategy makes same trades as CFMM, at external market prices
® Formally, it is is the self-financing trading strategy defined by:
* Initial holdings match the pool, i.e., (zo,y0) = (z*(Py),y*(FPo))

* Risky holdings continuously rebalanced to match the pool, i.e., z; £ z*(P;)

R; £ rebalancing portfolio value

t/At—1
~ Vo + Z z*(Piat) X (Put1yat — Piat)
i=0
initial value = per period P&L

t
0




Loss vs. Rebalancing

Define loss-versus-rebalancing (LVR) as:

A
LVR, 2 R - v
~—
rebalancing portfolio value  pool reserve value

Intuitively: how much does V; lose, compared to making same trades at market prices R;?




Loss vs. Rebalancing

Define loss-versus-rebalancing (LVR) as:

A
LVR, 2 R - v
~—
rebalancing portfolio value  pool reserve value

Intuitively: how much does V; lose, compared to making same trades at market prices R;?

Theorem. (Milionis, Moallemi, Roughgarden, Zhang 2022) The LVR process is
non-negative, non-decreasing, and predictable, and satisfies

t
LVR; = %/0 |z (Py)| o2P?ds >0

marginal liquidity quadratic variation

Note: LVR is different than “impermanent loss"!




Intuition: Slippage

t
WVR;2 R - Vi =} / 27 (P)|]  oiPZds >0
~— ~~ 0 S—— ——

rebalancing value  pool value

® Suppose external prices changes from p to p — dp

marginal liquidity quadratic variation




Intuition: Slippage

t
WVR;2 R - Vi =} / 27 (P)|]  oiPZds >0
~— ~~ 0 S—— ——

rebalancing value  pool value

® Suppose external prices changes from p to p — dp

o AMM buys quantity dx

marginal liquidity quadratic variation




Intuition: Slippage

t
WVR;2 R - Vi =} / 27 (P)|]  oiPZds >0
~— ~~ 0 S—— ——

rebalancing value  pool value
® Suppose external prices changes from p to p — dp
o AMM buys quantity dx

® PAMM =D — %dp

marginal liquidity quadratic variation




Intuition: Slippage

t
2
LVR; = Ry - Vi =1 |z (Ps)| o2P%ds >0
2 sts
~ ~— 0 “——— ——
rebalancing value  pool value marginal liquidity quadratic variation

Suppose external prices changes from p to p — dp

AMM buys quantity dx 1.5
pbamm =P — %dp

AMM loss/arb profit is

dz(p — 3dp) — dz(p — dp)

AMM price external price
dx dp dx
=5 = h g, @ =i x W) x ot 05

since (dp)? = o?p? dt is the quadratic variation




LP Return Decomposition

Adding in fees,

LP P&L; = FEE; + V-V = / x*(Ps) dPs + FEE; — LVR;
~—— —— ——

accumulated fees

change in pool
reserve value

ot

J0
— fees minus LVR
rebalancing P&L




LP Return Decomposition

Adding in fees,

ot

LP P&L, = FEE, + V-V, :/ 2*(P,) dP, + FEE, — LVR,
~—— —— ——

J 0
accumulated fees  change in pool —_—— fees minus LVR

reserve value rebalancing P&L
Like Black-Scholes, our decomposition corresponds to a tradable strategy!
® Simply delta-hedge the LP position!
® | ong CFMM LP, short rebalancing portfolio, isolates FEE; — LVR;




LP Return Decomposition

Adding in fees,

ot

LP P&L; = FEE, + V=V = / x*(Ps) dPs + FEE; — LVR;
~—— —— Jo ——
accumulated fees  change in pool —_—— fees minus LVR
reserve value rebalancing P&L

Like Black-Scholes, our decomposition corresponds to a tradable strategy!
® Simply delta-hedge the LP position!

® | ong CFMM LP, short rebalancing portfolio, isolates FEE; — LVR;
T 0.2P2
=  Hedged LP P&L, = FEE; — LVR7 = v x VOLUMEr —/ %u*'(a)\ dt
0




LP Return Decomposition

Adding in fees,

ot

LP P&L; = FEE, + V=V = / x*(Ps) dPs + FEE; — LVR;
~—— —— Jo ——
accumulated fees  change in pool —_—— fees minus LVR
reserve value rebalancing P&L

Like Black-Scholes, our decomposition corresponds to a tradable strategy!
® Simply delta-hedge the LP position!
® | ong CFMM LP, short rebalancing portfolio, isolates FEE; — LVR;

T _2p2
P,
T (P dt

= Hedged LP P&L; = FEE; — LVRy = v x VOLUME, — /
0
Continuously hedged LP P&L is variance-to-volume swap:
® Receive floating leg proportional to volume

® Pay floating leg of a (continuously sampled, liquidity weighted) variance swap




Example: Constant Product Market Maker

Example. (Uniswap V2)
e Constraint set: {(:U,y) ER2 ¢ f(z,y) 2oy = L}
e Pool value: V(P)=2LvP Demand curve: 2*(P)=L/\P
e Instantaneous LVR: 022P2|x*’(P)] = LZz P = i:V(P)

e Constant LVR per dollar of pool reserves
(True of weighted geometric mean bonding functions, e.g., Balancer)




Example: Uniswap V2 WETH-USDC

®» USDC-ETH Pair

©1USDC = 00005 ETH (§1.00) @ 1ETH = 1,892 USDC ($1,892)

Pair Stats

Total Liquiaity

$124,749,254

Liquidity | Volume

Volume (24nvrs)

$21,986,137

vs)
$65,958

Pooled Tokens
® 62,360,470 USDC
® 32,959ETH

ETHUSDC

33



Example: Uniswap V2 WETH-USDC

®» USDC-ETH Pair

$124,749,254

$21, 137

$65,958

® 62,360,470 USDC
® 32,959ETH

Naive “yield” calculation:

$66K fees (daily)

$125M

~ 19% (annual)




Example: Uniswap V2 WETH-USDC

®» USDC-ETH Pair

$124,749,254

$21,986,137

® 62,360,470 USDC
® 32,959ETH

Assuming volatility o = 5% (daily), our model says:

Naive “yield” calculation:

$66K fees (daily)
$125M

~ 19% (annual)




Example: Uniswap V2 WETH-USDC

& USDOlETI Par . Naive “yield” calculation:

$66K fees (daily)
$125M

~ 19% (annual)

$124,749,254

$21, 137

ces (24hrs)
$65,958

® 62,360,470 USDC
® 32,959ETH

Assuming volatility o = 5% (daily), our model says:

24hr LVR cost (%) = 0?/8 = 3.125 (bp), 24hr LVR cost ($) = $39K




Example: Uniswap V2 WETH-USDC

@ USDC-ETH Pair . Naive “yield” calculation:

$66K fees (daily)

~ 19% (annual)

$125M
$124,749,254
521,9;36,137 Our “yiEICI" calculation:
$66K — $39K
HO0K — 530K ~ 8% (annual)

® 62,360,470 USDC . $125 M

® 32,959ETH

Assuming volatility o = 5% (daily), our model says:

24hr LVR cost (%) = 0?/8 = 3.125 (bp), 24hr LVR cost ($) = $39K
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Empirical Test

LP P&L; — /

ot

J0

2P2

t
o*(P,) dP, = FEE, — / ”STS\;U*’(PS)\ ds
0

Delta-Hedged LP P&L

Fees Minus LVR




Empirical Test

1 t 52 p2
LP P&L, —/ +*(P,)dP, = FEE, —/ = e ()| ds
JO 0
Delta-Hedged LP P&L Fees Minus LVR

® LHS: Return of delta-hedged LP position (model-free!)
* LP P&L,: Directly measure pool value change y; + Pz, accounting for mints/burns

t
o / 2" (Ps) dPs: Approximate by delta-hedging AMM at different discrete time horizons
0




Empirical Test

"t

LP P&L; —/ z*

J0

Lolp?
(P,) dP, = FEE, — / (T‘ST‘“\;U*’(PS)\ ds
0

Delta-Hedged LP P&L Fees Minus LVR

® LHS: Return of delta-hedged LP position (model-free!)
* LP P&L,: Directly measure pool value change y; + Pz, accounting for mints/burns

t
o / 2" (Ps) dPs: Approximate by delta-hedging AMM at different discrete time horizons
0

® RHS: Fees minus LVR (uses our theory)
U FEEt Trade volume times fee rate, directly measured

2p
o
. o |2 (P;)| = 02 /8 x pool value for constant product MM

Use same day 60 minute realized volatility for oy




Empirical Test

"t

LP P&L; — / z*

J0

Lolp?
(P,) dP, = FEE, — / U‘ST‘*\;U*’(PS)\ ds
0

Delta-Hedged LP P&L Fees Minus LVR

® LHS: Return of delta-hedged LP position (model-free!)
* LP P&L,: Directly measure pool value change y; + Pz, accounting for mints/burns

t
o / 2" (Ps) dPs: Approximate by delta-hedging AMM at different discrete time horizons
0

® RHS: Fees minus LVR (uses our theory)
U FEEt Trade volume times fee rate, directly measured

. U? Lz (Py)| = 02 /8 x pool value for constant product MM
Use same day 60 minute realized volatility for oy
Questions:
® |s our analytic formula accurate?

® |s LPing attractive?




Volatility

realized volatility (%, daily, 60min samples)

20.0%

—e— realized volatility
17.5%
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10.0%

7.5%

5.0% g

2.5%
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Data set: Binance ETH-USDC prices




Pool Value

total pool value (USDC, millions)
350M

—e— pool_value
300M
250M
200M
150M
100M

50M

oM
2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Data set: Uniswap V2 WETH-USDC pool (from Ethereum blockchain), Binance ETH-USDC prices




LP P&L

cumulative P&L (USDC, millions)

8OM —e— pool_pnl

60M

40M

20M
oM

-20M

-40M
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Hedged P&L and LVR

cumulative P&L (USDC, millions)

8OM —e— pool_pnl
—— hedged_pnl_1D
—— hedged_pnl_4H
60M —— hedged_pnl_1H
hedged_pnl_5min
40M hedged_pnl_1min
fees_minus_Ivr_pnl
20M
oM W
-20M
-40M

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08




Hedged P&L and LVR

cumulative P&L (USDC, millions)

20M - —— hedged_pnl_1D
—— hedged_pnl_4H
15M —— hedged_pnl_1H
—— hedged_pnl_5min
—— hedged_pnl_1min
10M  ——

fees_minus_Ivr_pnl

5M

oM

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08




Hedged P&L and LVR

cumulative P&L difference vs. fees_minus_Ivr_pnl (USDC, millions)

diff_pnl_1D

-2M ———diff_pnl_4H
— diff_pnl_1H
-4M —— diff_pnl_5min
iff_pnl_1min
-6M
-8M
-10M
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Returns

cumulative P&L (USDC, millions)

80M = ggg'-;;' = Return  Sharpe

hecged_pnl 4 (annualized)

60M —— hedged_pnl_1H

o hedgedianSm?n POOl P&L —62% —-0.2
e Hedged P&L (daily) 5.0% 1.8
oM Hedged P&L (4 hour) 8.2% 5.5
om b Hedged P&L (1 hour) 9.7% 10.8
om Hedged P&L (5 min) 8.4% 18.2
Hedged P&L (1 min) 9.0% 23.3
-40M Fees-LVR 8.2% 17.0

2021-08 2021-09 2021-10 2021-11 2021-12 2022-01 2022-022022-03 2022-04 2022-05 2022-06 2022-07 2022-08

Data set: Uniswap V2 WETH-USDC pool (from Ethereum blockchain), Binance ETH-USDC prices




What If Arbitrageurs Pay Fees?




LVR and Arbitrage Profits

LVR = Arbitrage Profits

under the assumptions that:

e arbitrageurs able to trade continuously
= in reality: can only trade at discrete instances of block generation

e arbitrageurs do not pay fees
= in reality: AMMs have trading fees




Impact of Arbitrageur Fees
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Red = external market price

time ¢
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Impact of Arbitrageur Fees

Red = external market price
Blue = AMM pool price
X = block generation times




Impact of Arbitrageur Fees
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X = block generation times




Impact of Arbitrageur Fees
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Model (NEW)

Additional characteristics:
e Block arrival times: Poisson process with mean At

e Uniform proportional fees: ~ fraction (e.g., 30 bp)




Model (NEW)

Additional characteristics:
e Block arrival times: Poisson process with mean At

e Uniform proportional fees: ~ fraction (e.g., 30 bp)

e P, = external market (CEX) price

e P, = implied AMM pool price
e 2 2 log(P;/P;): log mispricing between pool and external market
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Evolution of the Mispricing Process (2)

e When a block arrives, the arb trades if z; & [—7,7]
and pushes mispricing back to that boundary

e Otherwise, )
dZt = legPt/Pt = (/.L — %0'2> dt“‘ O'dBt

® 2z is a jump diffusion process

o2

* (WLOG) Assumption (symmetry): p = %
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Fees and Discrete Block Generation

Assume block generation ~ Poisson(At~!), At £ mean interblock time

Arbs trade only at block generation times, perfect competition between arbs

= When an arb arrives at time ¢, they trade myopically until there is zero marginal profit,

+y if 2 >+
ze = 2— if 2 € [=7,7]
—y if o <=y

Otherwise, )
dz = dlog P,/ P, = (u - %02) dt + odBy

® 2 is a jump diffusion process

* (WLOG) Assumption (symmetry): p = 102




Stationary Distribution

Lemma. (Milionis, Moallemi, Roughgarden 2023) The mispricing process is ergodic, and

under the symmetry assumption, the unique stationary distribution is given by:
density

o e+z/”\/m o e_z/"\/ﬁ/2
n\o;trade\
W.p. To
sell trade . I . buy trade
wW.p. T_ : W.p. Ty
-y 0 v pool mispricing z

IDtrade

Q




Probability of Trade

1

Ptrade = R

= fraction of blocks with an arb trade

TG
With o = 5% (daily),

At \ v ‘ 1 bp 5 bp 10bp 30 bp 100 bp
10 min 96.7% 855% T74.7% 49.6% 22.8%
2 min 92.9% 725% 56.9% 305% 11.6%
12 sec | 80.7% 45.6% 29.5% 12.3% 4.0%
2 sec 63.0% 254% 145% 5.4% 1.7%
50 msec | 21.2%  5.1% 2.6% 0.9% 0.3%




Arbitrage Profits

e ARB7 £ cumulative arbitrage profits over [0, T

e ARB £ |im M
T—0 T

= instantaneous intensity of arbitrage profits
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e ARB7 £ cumulative arbitrage profits over [0, T

e ARB £ |im M
T—0 T

= instantaneous intensity of arbitrage profits

Theorem. (Milionis, Moallemi, Roughgarden 2023) Under suitable technical assumptions, in
the fast block regime, as At — 0,

2P * (PeY # (Pt
RB:”2 Y (Pe );y (Pe )XPtrade+O(\/At>

= LVR + o(«) for ~y small

~ LVR X Pyrade




Arbitrage Profits

intensity of arb profits ARB ~ LVR x

1
°
1+ o+/At/2
—_———

N
=Ptrade

Equivalent to a rescaling of time by Pirade
For small At (i.e., fast blocks), if fee rate v > 0, ARB = ©(v/At)

Corollary: Faster blocks = less LP losses due to arbitrage

Example: if At =12 seconds — 3 seconds, arbitrage profits reduced by 50%

Intuition: faster blocks create more intense competition between arbs

Discontinuity: if fee rate v = 0, ARB ~ LVR = (1)




Fees Paid by Arbs

e FEEARB £ cumulative fees paid by arbitrageurs over [0, 7]

lI>

lim

——=ARB
FEE
* T—0 T

E[FEEZRE]

= instantaneous intensity of arbitrage fees




Fees Paid by Arbs

e FEEARB £ cumulative fees paid by arbitrageurs over [0, 7]

ARB
o FEEA®® 2y EFEETT]

= instantaneous intensity of arbitrage fees
T—0 T y &

Theorem. (Milionis, Moallemi, Roughgarden 2023) Under suitable technical assumptions, in
the fast block regime, as At — 0,

2 oY\ ¥ —y +v */ +
FEEARE _ 02P L (L—e)y (Pe )2+ (e = Dy” (Pet?)
Y

= LVR + o(«) for v small
~ LVR x (1 - I:)trade)

(1 - Ptrade) +o0 (1)




Fees and Discrete Block Generation

intensity of arb profits ARB ~ LVR X Pirade
intensity of fees paid by arbs FEE™® ~ VR x (1 — Pirade)
ARB + FEE™"® ~ VR

e | VR is “conserved”, fees serve to divide LVR between profits earned by arbitrageurs and
fees paid by arbitrageurs to LPs

e Our techniques can be applied to other fee structures!




Implications for AMM Design
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Arbitrage profits are a zero-sum cost paid to intermediaries, reducing arb profits will increase
gains from trade and thus social welfare




Mitigating Arbitrage Profits

Arbitrage profits are a zero-sum cost paid to intermediaries, reducing arb profits will increase

gains from trade and thus social welfare

=" Dan Robinson
&

DEXes leak value to miners through three kinds of MEV:

1. Gas costs
2. Slippage/sandwiching
3. Loss-vs-rebalancing

Reduce any of these leaks, and you preserve more value for swappers
and LPs.

So each of these categories corresponds to a promising line of DEX
research.

Tt -

LVR Reduction:
The Biggest Open Problem in DeFi
(Part One)

Max Resnick
Head of Research, SMG

. sme
=z

UPCOMING SPACE

PPART TWO of "LVR Reduction: The Biggest Open Problem in DeFi"

Wed, Aug 16
@ 12PMPST/3PMEST

Join . researcher  DeFi thinker/builder
;and SMG's and as they dive
deeper into this challenging topic.

Wednesday, August 16th
12PM PST /3 PM EST

LVR Reduction:
The Biggest Open Problem in DeFi

PartTwo

57



Mitigating Arbitrage Profits

Faster Blockchains
e Reduce losses to arbs potentially at the cost of less decentralization

Dynamic Fees
e Adjust fees based on market conditions (e.g., volatility /variance/LVR)
e More complex fee rules (e.g., non-proportional fees)

Oracle AMMs
® Incorporate external market prices into AMM quoted price

Auctions / Monetize LVR

e Auction the right to arb the pool (e.g., first trade in every block) in exchange for
compensation to LPs




There is Room for Innovation in Exchange Design!

- Tgf-. - Richzrd De\évey,CiamacMoaIIemi

LA 7 &
Free Exchangeis Not Free

Instead, the exchange waits for either fixed time
intervals, or until some liquidity threshold is met
(such asatleast US$1 million of executable orders).
FBAs were previously used in equity markets such
as Taiwan and have been advocated by academics as
ameans of mitigating the so-called “HFT tax’.

It’s natural to think that all three types of
exchanges could co-exist, competing for trades.
However, this fragments liquidity and may prevent
each exchange from getting the necessary diversity
of trader types. So, there are both economic forces
and social benefits to concentrating transactions
on one exchange type for each asset class, leaving
the other exchange types to pick up niche business.

Therise of crypto

markets and smart contracts
hasfueledinnovationin
exchange mechanisms. This
article explores core market
design principles and their
tradeoffs.

£
£
£
i
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shaddim, CCBY-5A
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¢ R. Dewey, C. C. Moallemi, A. Brown. Free exchange is not free. Wilmott Magazine,
September 2023.
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Loss Versus Rebalancing: Proof

V(P) 2 minimize Pz+y
(J:,y)ER%r

subject to  f(x,y) =L

Lemma.
1. V/(P)=a*(P) >0
2. V'(P)=a2¥(P)<0
Proof.

1. "Envelope Theorem”: chain rule + first-order-conditions + implicit function theorem
d * * *
V/(P):ﬁ{Pm (P)+y"(P)} =2"(P)

V(P)
2. Pointwise minimum of linear functions is concave




Loss Versus Rebalancing: Proof

V(P) £ minimize Px +y, subjectto f(z,y) =L
(zy)ERL

V'(P) =a*(P) >0, V"(P)=xz"(P)<0

By 1t6’s lemma:

AV, = V'(P,) dP; + AV"(P,) (dP,)* = x*(P;) dP; + 2™ (Py) o} P} dt
e Compare rebalancing strategy:
t
Ri=Vp +/ 25(P)dP,, dR: = 2*(P,)dP;
0

Difference is:

dRy — dV, = =32 (P,) o P dt

Intuition: LVR arises from It6’'s lemma and concavity of V(P), which depends on
marginal liquidity z* (P)




Doob-Meyer Interpretation

Because of concavity/Jensen’s Inequality,

EC Vil = EX[V(P)|A] < V (E[RIA]) = V()

= pool value is a (Q-supermartingale
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Doob-Meyer Interpretation

Because of concavity/Jensen’s Inequality,

EC [VIF] = E2[V(P)| R < V (EC[RIR]) = V(R) = Vi

= pool value is a (Q-supermartingale

The Doob-Meyer Decomposition yields a unique decomposition of a supermartingale
Vi = M; — A; where:

e M, is a martingale

e A, is a predictable, increasing process with Ay = 0 (the “compensator”)

Here,
M; = Ry, A; = LVR;




Option Pricing Interpretation

"t

LP P&L; = FEE; + Vi—-W = / x*(Py) dPs + FEE; — LVR,
—— ——— Jo —_———
accumulated fees  change in pool ~———~——" fees minus LVR

reserve value rebalancing P&L

Suppose we hold fixed an investment in a CFMM over [0, T]. What is the fair value?
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Option Pricing Interpretation

ot
LP P&L; = FEE; + Vi—-W = / x*(Py) dPs + FEE; — LVR,
—— ——— Jo —_———
accumulated fees  change in pool ~———~——" fees minus LVR
reserve value rebalancing P&L

Suppose we hold fixed an investment in a CFMM over [0, T]. What is the fair value?

EQILP P&L,] = EQ[FEE,] +EQV(P)]— V(Py) = EQ[FEE,] — EQ[LVR,]
—— ——— —— ———
value of future value intrinsic current value time value

accumulated fees of reserves of reserves

e EQ[LVR] is the fair time value of the option premium associated with the liquidity
demand curve x*(-) / concave payoff V (-)

e LPs pre-commit to a liquidity curve / concave payoff, LPs receive fee income instead of
an option premium

e Alternative viewpoint (vs. arb profits)




Option Pricing Interpretation

T T 0.2P2
=Ry — Ry — LVRp = / z*(Py) dP; — / %m*’(ﬂ)\ dt
J0 J0

Three ways to get exposure to volatility over the period [0, 7] [Carr, Madan 2002]:
e Static terminal payoff: pool reserves
e Dynamic trading (delta hedging): rebalancing strategy i — Ry

e Variance swap: LVRp




Other Benchmarks / Impermanent Loss

Consider an alternative benchmark:

HODL

e |nitial holdings match the pool, i.e., (xE'ODL,yO

e Risky holdings held constant zHOPL £ 2*(Ry)
o IL; £ zHOPLp, 4 4 HOPL 7 — “impermanent loss” or loss-versus-holding
HODL value

) £ (2*(R),y* (P))




Other Benchmarks / Impermanent Loss

Consider an alternative benchmark:

HODL

e |nitial holdings match the pool, i.e., (xE'ODL,yO

e Risky holdings held constant zHOPL £ 2*(Ry)
o IL; £ zHOPLp, 4 4 HOPL 7 — “impermanent loss” or loss-versus-holding
HODL value

) £ (2*(R),y* (P))

Then,

t
IL, = LVR, + / (2O — 2#(Py)] dP,
0

e Ex ante: EQ[IL;] = EQ[LVR,], i.e., same “market price”
e Ex post: IL conflates adverse selection (LVR) with market risk

e The rebalancing portfolio is the unique choice of benchmark relative to which losses are

predictable and non-decreasing

(“super-replicating portfolio”, compensator in Doob-Meyer Decomposition)




Example: Uniswap V3

Example. (Uniswap V3 Range Order)

e Consider a single range order over [P,, P,] with liquidity L
¢ Pool value, for P € [P,, Py]:

V(P)=L(2VP - P/VP,— VP) = Lf(‘ﬁ VP | VP- W)

VP VP

L
e Instantaneous LVR: {(o, P) = Z VP = same as before

e |nstantaneous LVR per dollar of reserves can be arbitrarily high over a narrow range




