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Summary of New Online Ensemble Algorithm

Online : sequential update of the weights of individual
models.
Model-Agnostic : relies solely on recent forecasting
performance for privacy preservation.
Facilitates integration of information from many
models and datasets developed by different groups, e.g.,
within a large organization or a web-scale social network,
e.g., micropredictions as in Cotton (2022).
Overcomes computational inefficiencies and challenges
posed by serial correlation or potential non-stationarities in
the time-series data.
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Sector Rotations During COVID-19

Technology Surge : Growth in software, cloud
computing, and online services.
Healthcare & Biotech : Vaccine and treatment.
Travel & Hospitality Drop : Lockdowns & Restrictions
E-commerce Boom : Accelerated growth in online retail.
Energy Sector Volatility : Initial decline, then recovery.
Financial Sector Challenges : Economic uncertainty.
Real Estate Shifts : Commercial challenges, residential
and industrial growth.
Consumer Staples vs. Discretionary : Stability in
essentials, variability in non-essentials.
Home Improvement Growth : Increased demand due to
more time spent at home.
Telecommunications and Media : Growth in streaming
and digital entertainment.
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Application to Sector Rotation

Sector Rotation is a strategy used by investors whereby
they hold on an overweight position in strong sectors and
underweight position in weaker sectors.
Gu, S., Kelly, B., and Xiu, D. RFS (2020) 1show that
Machine Learning methods (ML) lead to large economic
gains to investors in terms of Asset Risk Premiums and
higher out-of-sample Sharpe Ratios of the
corresponding equities portfolio.
We show that even higher gains in terms of Sector Risk
Premiums and higher out-of-sample Sharpe Ratios to
investors can be achieved when using ML to Sector
Returns and Sector Rotation Strategy .

1. "Empirical Asset Pricing via Machine Learning", Review of Financial Studies, Vol. 33,
Issue 5, (2020), 2223-2273.
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Preview of the Performance of the Online Ensemble
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Flowchart of the “Online Ensemble of Models” Paper
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Measuring Sector Risk Premia

Sector breakdown : We break down the assets into
industry level based on the first two digits of Standard
Industrial Classification (SIC) codes and then present the
data in a two-dimensional layout (i.e., time and sector). We
consider N = 60 sectors and denote the excess return of
sector i over one period (month) from t to t+ 1 by ri,t+1,
where i ∈ {1, . . . , N} and t ∈ {1, . . . , T}.
Additive prediction error model :

ri,t+1 = Et(ri,t+1) + ϵi,t+1

where
Et(ri,t+1) = g(zi,t).
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Preprocessing Approach for Sector Returns

We obtain the treasure bill rate to proxy for the risk-free rate from which we
calculate sector excess returns. We have the following two versions of sector
returns :

ri,t+1 =



1

ni

ni∑
j=1

rji,t+1 equally-weighted

∑ni
j=1 c

j
i,tr

j
i,t+1∑ni

j=1 c
j
i,t

capital-weighted

where rji,t+1 is the return value for company j which belongs to sector i in time

t+ 1, cji,t is the corresponding market cap of that company, and ni is the total
number of the companies in the sector i.
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Probabilistic Principal Component Analysis(PPCA)

PCA : rotates the original sample
data into the orthogonal
components.
PPCA : It is PCA combined with
an expectation–maximization (EM)
algorithm to deal with the missing
values in the data in the inputs.
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Preprocessing Approach Algorithm for Predictor
Variables

Algorithm Preprocessing Approach Algorithm
Input: ni, the total number of the companies in the

sector i ; K, the number of total stock-level predic-
tive characteristics ; the kth stock-level predictive
characteristic value x

j(k)
i,t of company j for a given

sector i in time t, where i ∈ {1, . . . , N}, N num-
ber of sectors ; j ∈ {1, . . . , ni} ; k ∈ {1, . . . ,K} and
t ∈ {1, . . . , T}.

Output: zi,t, the explanatory variables for a given sec-
tor in time t.

1: for i = 1 to N do
2: for k = 1 to K in t ∈ {1, . . . , T} do
3: PPCA to [x

j(k)
i,t ]t=1,...,T

j=1,...,ni
∈ RT×ni

4: Store the first principal component
(PC1): [f

(k)
i,t ]t=1,...,T ∈ RT×1

5: end for
6: end for
7: [zi] = [f

(1)
i,t , . . . , f

(K)
i,t ]t=1,...,T

k=1,...,K ∈ RT×K

8: return [zi]
9: end

f
(k)
i (i.e., PC1(i) - the first Principal Component) is a univariate summary of the

variation of a given stock-level characteristic (k) in a sector i.

[zi] = [f
(1)
i,t , . . . , f

(K)
i,t ]

t=1,...,T
k=1,...,K

∈ RT×K sector specific predictors
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Machine Learning Signals
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LASSO

Simple linear model is suitable for low dimension predictors
problems. The linear model becomes unstable and shows poor
predictive performance as the number of predictors increases or
in the situation when the actual relation is sparse or when
T < P .
LASSO regression is an L1 penalized model where we simply
add the L1 norm of the weights to our least-squares objective
function :

L(θ;λ) = 1

T

T∑
t=1

(
ri,t+1 − g(zi,t; θ)

)2
+ λ

P∑
j=1

|θj |.
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Principal Components Regression(PCR)

PCR is an alternative to multiple linear regression (MLR) and has
many advantages over MLR. The PCR can perform regression
especially when the predictor variables are highly correlated.
Mathematically, PCR is the two-step process as following :

K︸︷︷︸
T×M

= Z︸︷︷︸
T×P

Φ︸︷︷︸
P×M

,

R̂︸︷︷︸
T×1

= K︸︷︷︸
T×M

θM︸︷︷︸
M×1

,

where Z is the T × P matrix of stacked predictor variables zi,t for a
given sector i, R is the T × 1 vector of ri,t+1 and θM is the M × 1
coefficient vector, where M ≪ P . The columns in K represents the
scores from PCA are orthogonal to each other, obtaining
independence for the next regression step.
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Gradient Boosting and Random Forests

The partition of the tree structure is
built by recursively splitting the predictor
space into rectangular regions. A typical
regression tree follow a model of form
denoted

f̂(zi,t; θ,M) =

M∑
m=1

θm · 1{zi,t∈Rm},

where Rm represents one of the total M
partitions of feature space. Each partition
is a product of up to M indication
functions. θm is denoted as the sample
mean of each corresponding partition.
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Gradient Boosting and Random Forests

To generate a random forest, we calculate the f̂(zi,t) for each
separate bootstrapped training sample and get the average
estimation by

f̂avg(zi,t) =
1

B

B∑
t=1

f̂ b(zi,t).

In gradient boosting, decision trees are added in sequence :

f̂(zi,t) =

B∑
t=1

λf̂ b(zi,t).

The shrinkage parameter λ controls the learning rate. Small
value λ may require a very large number B to achieve good
performance.
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Neural Networks

The feed-forward networks refers to the
networks where connections between
the neurons do not form a cycle.
A typical network includes three
components : input layer, hidden layer
and output layer.
The activation function of a node
defines the output of that node given an
input or set of inputs. The most
commonly used form is Rectifier linear
unit, defined as

ReLU(x) = max(0, x).
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Neural Networks

The output of the neuron in a layer is the activation function of
a weighted sum of the neuron’s input in the previous layer. Let
us denote K(l) as the number of neurons in each layer and x

(l)
k

as the output of neuron k in layer l = 1, . . . , L. Hence, the
output formula for each neuron in layer l > 0 is given by

x
(l)
k = Activation(x(l−1)′w

(l−1)
k ),

where wk is the weight matrix on connection from layer l − 1 to
l. Then the final output of our neural network can be written as

g(z;w) = x(L−1)′w
(L−1)
k .
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Multiplicative Weights Update Method (MWUM)
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Multiplicative Weights Update Method (MWUM)

We build an online meta-algorithm that for each sector
optimally combines predictions from different ML models
(experts) based on MWUM.
We assign initial weights to the experts (we set them
equal), and update these weights multiplicatively and
iteratively according to the feedback of how well each
model performed after each rolling window : reducing it in
case of poor performance, and increasing it otherwise.
The algorithm gradually learns what combination of ML
methods to pick for which sector.
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CV vs. Online Learning with MWUM
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Multiplicative Weights Update Method (MWUM)

Algorithm Meta Multiplicative Weights Algorithm
Input: {r̂t}t=1,...,T , where r̂t = [r̂t,1, . . . , r̂t,L]

⊤ vector of the predicted returns (for a given sector) from L different prediction
models at rolling window t ; η, the learning rate meta-parameter to update the gain function.

Output: {r̃t}t=1,...,T , with r̂⊤t p
(t) the weighted combination of predictions of all the models at time t, where p(t) =

[
p
(t)
1 , . . . , p

(t)
L

]⊤
;

and p
(t)
l the weight of each model l = 1, . . . , L at time t (determined only using the past performance).

Initialization : Fix the learning rate η ≤ 1/2. With each decision, associate the weight at time 1 : w(1) =
[
w

(1)
1 , . . . , w

(1)
L

]
,

and w
(1)
l = 1

for t = 2, 3, . . . , T do

1. Choose decision l with probability proportional to its weight w
(t)
l . I.e., use the distribution over decisions

p(t) =
[
w

(t)
1 /Φ(t), . . . , w

(t)
L /Φ(t)

]⊤
where Φ(t) =

L∑
l=1

w
(t)
l .

2. Observe the gains of the decisions m(t) =
[
m

(t)
1 , . . . ,m

(t)
L

]⊤
(see slide 23 for the optimal choice of the gain function)

3. Update the ensemble weights : w(t+1) = w(t)(1 + ηm(t)).

end for
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Multiplicative Weights Update Method (MWUM)
The MWUM algorithm is most commonly used for decision making and
prediction, and also widely deployed in game theory and algorithm design.
It was discovered repeatedly in machine learning (AdaBoost, Winnow,
Hedge), optimization (solving linear programs), theoretical computer science
(devising fast algorithm for LPs and SDPs), and game theory.

Theorem (The theoretical guarantee of the algorithm)

Assume that all costs m
(t)
l ∈ [−1, 1] in m(t) =

[
m

(t)
1 , . . . ,m

(t)
L

]⊤
and η ≤ 1/2.

Then the MWUM guarantees that after T rounds, for any distribution p on the
decisions, we have

T∑
t=1

m(t)⊤p(t) ≤
T∑

t=1

(m(t) + η|m(t)|)⊤p+
logL

η

The vector p is arbitrary in this theorem. Hence, by setting it to the optimal
strategy we can bound the average expected cost of the MWUM in terms of
the total cost of the best strategy.
We develop its version for the purpose of optimal Risk Premia prediction.
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Multiplicative Weights Update Method (MWUM)
We define our gain function as

m(t)(p(t)) = (1L −
(rt1L − r̂t)2

σ̂2
t

)︸ ︷︷ ︸
exploitation

−
R̃t1L

σ̂2
t︸ ︷︷ ︸

exploration

,

where
ri,t is the out-of-sample return of sector i at rolling window t

r̂t =
[
r̂t,1, . . . , r̂t,L

]⊤ vector of the predicted returns (for a given sector)
from L different prediction models at rolling window t

R̃t = [ξi,j,t]
j=1,...,L
i=1,...,L is an L× L matrix with

ξi,j,t =

{
r̂t,ir̂t,jp

(t)
j if i ̸= j

−r̂2t,i(1− p
(t)
i ) otherwise,

σ̂2
t = 1

T

∑T
s(t)=1

r2
s(t)

is the bootstrap estimate of the second moment of the
sector returns based on the past t observations, and
1 = [1, . . . , 1]⊤ ∈ RL.

Note that this gain function promotes models that start to perform well
and predict differently than already well performing models. Namely,. . .

Paweł Polak (AMS & IACS at SBU) Online Ensemble of Models 24 / 50



Introduction
Methodology

An Empirical Study
Conclusions

Multiplicative Weights Update Method (MWUM)

m(t)(p(t)) = (1L −
(rt1L − r̂t)2

σ̂2
t

)︸ ︷︷ ︸
exploitation

−
R̃t1L

σ̂2
t︸ ︷︷ ︸

exploration

,

the first term exploits the well-performing models :
it is responsible for increasing (penalizing) the weight of the models with the
previous rolling-window forecast error smaller (larger) than the second
moment of the returns ;
i.e., if the model forecasts are better than naive r̂t = 0 forecast, then the
first term is positive.
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Multiplicative Weights Update Method (MWUM)

m(t)(p(t)) = (1L −
(rt1L − r̂t)2

σ̂2
t

)︸ ︷︷ ︸
exploitation

−
R̃t1L

σ̂2
t︸ ︷︷ ︸

exploration

, where R̃t = [ξi,j,t]
j=1,...,L
i=1,...,L , with

ξi,j,t =

{
r̂t,ir̂t,jp

(t)
j if i ̸= j

−r̂2t,i(1− p
(t)
i ) otherwise,

and the second term captures exploration. It can be interpreted as following :
in case of a model that has already a high ensemble weight (p(t)i ≈ 1), this
term is negligible because 1⊤

Lp(t) = 1 implies p
(t)
j ≈ 0 for all j ̸= i ;

in case of a model that has a low ensemble weight (p(t)i ≈ 0), if it predicts in
the same direction as some well-performing model (r̂t,ir̂t,j > 0 for j such
that p

(t)
j ≈ 1), it is penalized further because there is already a

well-performing model that predicts the same returns. But if it predicts in
the opposite direction, than a well-performing model (r̂t,ir̂t,j < 0 for j such
that p

(t)
j ≈ 1), then this term increases the weight of model i (as long as the

prediction error from the first term is small).
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Multiplicative Weights Update Method (MWUM)

The following theorem shows that the average gains based on the proposed gain
function converges to R2

oos(τ), i.e., the Risk Premia of the corresponding ensemble
defined by a sequence of distributions

{
p(t)

}
t

Lemma (1)

For the gain function defined above, when τ → ∞, for any sequence of
distributions

{
p(t)

}τ

t=1
on the decisions, we have

∣∣∣∣∣R2
oos(τ)−

1

τ

τ∑
t=1

m(t)(p(t))⊤p(t)

∣∣∣∣∣ a.s.→ 0 as τ → ∞

where R2
oos(τ) = 1−

∑τ
t=1(rt−r̃t)

2∑τ
t=1 r2t

and r̃t = r̂⊤t p(t).
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Multiplicative Weights Update Method (MWUM)
With the convergence result and the theorem for the MWUM algorithm, we get

Theorem (2)

Assume that all gains m
(t)
l

∈ [−1, 1] in m(t) =
[
m

(t)
1 , . . . ,m

(t)
L

]⊤
and η ≤ 1/2. Then, for

any p∗ such that p(t) → p∗, we have

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞

{
η
1

τ

τ∑
t=1

∣∣∣m(t)
(p

(t)
)
∣∣∣⊤ p

∗
+

logL

τη
−

1

τ

τ∑
t=1

(p
(t) − p

∗
)
⊤
r̂tr̂

⊤
t p

∗
}

where R2∗
oos(τ) is a function of p∗.

for sufficiently large τ , the risk premia R2
oos(τ) of the resulting

meta-algorithm are not much worse than the risk premia of the limiting
ensemble.
if we confirm after τ iterations that our p(τ) is close to the p∗ which would
have been best in all the previous iterations, then we know that our MWUM
algorithm achieved close to optimal R2

oos(τ).
our algorithm allows for online updating and requires one additional
verification step at the end of the simulation (check if p(τ) is close to p∗).
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Corollary (2.1)
Under the assumptions of Theorem (2), and for any p∗, we have

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞

η

∥∥∥∥∥ 1

τ

τ∑
t=1

∣∣∣m(t)
(p

(t)
)
∣∣∣∥∥∥∥∥

2

+
logL

τη
−

1

τ

τ∑
t=1

(p
(t) − p

∗
)
⊤
r̂tr̂

⊤
t p

∗


where R2∗

oos(τ) is a function of p∗.

Corollary (2.2)
The optimal learning rate for the MWUM algorithm is given by

η
∗

=

√√√√ logL∥∥∥ 1
τ

∑τ
t=1

∣∣∣m(t)(p(t))
∣∣∣∥∥∥

2

and the resulting regret bound is

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞


√

logL

τ

∥∥∥∥∥ 1

τ

τ∑
t=1

∣∣∣m(t)
(p

(t)
)
∣∣∣∥∥∥∥∥

1/2

2

−
1

τ

τ∑
t=1

(p
(t) − p

∗
)
⊤
r̂tr̂

⊤
t p

∗

 .
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Multiplicative Weights Update Method (MWUM)
In practice we are interested in an ensemble which maximizes R2

oos. We can obtain the
estimate of it from the performance in the previous τ rolling windows as

p̂
∗

= arg max
p:1⊤p=1

{
1 −

1
τ

∑τ
t=1(rt − r̂⊤t p)2

1
τ

∑τ
t=1 r2t

}
. (1)

Lemma (2.2)

The solution of (1) is given by

p̂
∗

=

(
1

τ

τ∑
t=1

r̂tr̂
⊤
t

)−1 (
1

τ

τ∑
t=1

r̂trt −
1L( 1

τ

∑τ
t=1 r̂tr̂

⊤
t )−1 1

τ

∑τ
t=1 r̂trt − 1

1
⊤
L
( 1
τ

∑τ
t=1 r̂tr̂

⊤
t )−11L

1L

)

and ∥∥p̂∗∥∥
2

≤ min(1, δτ ) (2)

where

δτ =
1

λmin

∥∥∥∥∥ 1

τ

τ∑
t=1

r̂trt −
1L( 1

τ

∑τ
t=1 r̂tr̂

⊤
t )−1 1

τ

∑τ
t=1 r̂trt − 1

1
⊤
L
( 1
τ

∑τ
t=1 r̂tr̂

⊤
t )−11L

1L

∥∥∥∥∥
2

(3)

and λmin is the smallest eigenvalue of the matrix 1
τ

∑τ
t=1 r̂tr̂

⊤
t .

The bound in (2) allows us to modify the results in Corollary (2.1) and Corollary (2.2)
to derive tighter regret bounds and better learning rates that are optimal for the
problem of finding the ensemble which maximizes R2

oos.
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In particular, using the bound (2), and Cauchy-Schwarz inequality applied to the upper bound
in Theorem (2), we get

Corollary (2.3)

Under the assumptions of Theorem (2), and for p∗ satisfying (2), we have

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞

ηmin(1, δτ )

∥∥∥∥∥ 1

τ

τ∑
t=1

∣∣∣m(t)
(p

(t)
)
∣∣∣∥∥∥∥∥

2

+
logL

τη

+
1

τ

τ∑
t=1

(p
∗ − p

(t)
)
⊤
r̂tr̂

⊤
t p

∗
}

where δτ is given in (3), and R2∗
oos(τ) is a function of the optimal p∗.

The important difference relative to the result in Corollary (2.1) is that the new bound is

specific for the R2∗
oos(τ) of the optimal ensemble.
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Corollary (2.4)

The optimal learning rate for the MWUM algorithm is given by

η
∗

=

√√√√ logL∥∥∥ 1
τ

∑τ
t=1

∣∣∣m(t)(p(t))
∣∣∣∥∥∥

2

min(1, δτ ) and the resulting regret bound is

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞

min(1, δτ )
logL

τ

∥∥∥∥∥ 1

τ

τ∑
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∣∣∣m(t)
(p

(t)
)
∣∣∣∥∥∥∥∥

1/2

2

+
1

τ

τ∑
t=1

(p
∗ − p

(t)
)
⊤
r̂tr̂

⊤
t p

∗
}

The regret bounds in Corollary (2.3) and Corollary (2.4) show that for sufficiently large
number of rolling windows τ , the risk premia measured in terms of R2

oos(τ) of the resulting
meta-algorithm are not much worse than the risk premia of the best performing ensemble p∗.
In fact, since m(t)(p(t)) ∈ [−1, 1], Corollary (2.4) implies that in the limit

lim
τ→∞

{
R

2∗
oos(τ) − R

2
oos(τ)

}
≤ lim

τ→∞

1

τ

τ∑
t=1

(p̂
∗ − p

(t)
)
⊤
r̂tr̂

⊤
t p̂

∗
,

where we replace the optimal p∗ with the consistent and unbiased estimator from Lemma (2.2).
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Data

We obtain monthly stock return data
from the Center for Research in
Security Prices (CRSP).
Our sample period begins in March
1957 and ends in December 2021,
totaling 65 years. Also, we obtain the
94 stock-level predictive characteristics
used in Gu’s paper.
We obtain the industry dummies
corresponding to the first two digits of
Standard Industrial Classification (SIC)
codes to classify the sectors.
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Rolling Window Exercise

We divide the 65 years of data into 30 years of
training sample (1957-1986), and the
remaining 35 years (1987-2021) for
out-of-sample rolling window analysis.
Each time we refit, we increase the training
sample by 1 year and roll it forward to predict
the most recent 12 months (with monthly
updates in the predictors and MWUM
algorithm weights).
In each rolling window, we have approximately
360 observations of 30 year’s data as the
training set.
We apply the cross-validation technique to the
training sample to obtain meta-parameters as
in the LASSO penalty strength.
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Flowchart of “Online Ensemble of Models” (First Part)
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Performance Evaluation

To assess predictive performance for sector excess stock return
forecasts, we calculate the out-of-sample R2 for each sector then
average them across all the sectors. We follow the same formula
as in Gu’s paper and it is written as

R2
oos = 1−

∑
(ri,t+1 − r̂i,t+1)

2∑
r2i,t+1

,

where r̂i,t+1 is the prediction from different ML methods and
the meta-algorithm.

Paweł Polak (AMS & IACS at SBU) Online Ensemble of Models 36 / 50



Introduction
Methodology

An Empirical Study
Conclusions

Comparison of R2
oos

Table – Average percentage R2
oos (Gu’s paper - individual stocks)

PCR LASSO GBRT NN1 NN2 NN3 NN4 NN5

All 0.26 0.11 0.34 0.33 0.39 0.40 0.39 0.36
Top 1,000 0.06 0.25 0.52 0.52 0.62 0.70 0.67 0.64

Table – Average percentage R2
oos (our results on sector returns)

PCR LASSO GBRT NN6 NN7 NN8 NN9 NN10 NN11 NN12 Simple
Averaging

η∗ for
∥p∗∥2 ≤ 1

η∗ for
∥p∗∥2 ≤ min(1, δτ )

Feasible η∗

Average return -0.62 0.95 0.56 -0.06 0.83 0.53 0.24 0.77 0.62 0.75 0.90 0.94 0.95 1.19
Weighted return 0.38 1.11 0.89 0.35 0.36 1.11 0.89 0.95 0.80 0.75 1.07 1.09 1.10 1.12
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Return Prediction
Equally-weighted Scenario (ensemble the best)
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Return Prediction
Capital-weighted Scenario (ensemble the best)
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Heatmap of the Variables Importance Factors (VIF)
Equally-weighted Scenario (three main clusters of sectors)
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Heatmap of the Variables Importance Factors (VIF)
Capital-weighted Scenario (three main clusters of sectors)
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Flowchart of “Online Ensemble of Models” (Second Part)
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Sector Rotation Portfolio Strategy

We construct simple portfolios of top 5 sectors according to
the prediction of our meta-strategy.
We provide backtesting results of the strategy for different
definitions of sector returns.
We show that the performance of the strategy cannot be
explained by standard factor models.
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Performance Analysis

Jan 1987 Jan 1990 Jan 1992 Jan 1994 Jan 1996 Jan 1998 Jan 2000 Jan 2002 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan 2016 Jan 2018 Jan 2020 Dec 2021

Cumulative Return Jan 1987 / Dec 2021
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Performance Analysis
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Out-of-sample Years (1987-2021)

Table – Portfolio Statistics

Statistics (1987-2021) S&P
500 1/N Bottom 5 41-55 21-40 6-20 Top 5 5BPs

Top 5 Net
10BPs 15BPs

Panel I.A.
Equally-Weighted Returns
Annual Return 0.0889 0.1048 0.0661 0.0921 0.0983 0.1228 0.1415 0.1368 0.1322 0.1275
Annual Volatility 0.1504 0.1971 0.2304 0.2041 0.1951 0.1973 0.2153 0.2152 0.2151 0.2150
Annual Sharpe 0.5912 0.5317 0.2869 0.4511 0.5037 0.6225 0.6570 0.6357 0.6143 0.5931
Max. Drawdown 0.5256 0.6219 0.6639 0.6716 0.6204 0.5937 0.5233 0.5263 0.5292 0.5321
Annual Sortino 0.9487 0.9114 0.5903 0.8105 0.8640 1.0452 1.1465 1.1122 1.0782 1.0443
Panel I.B.
Capital-Weighted Returns
Annual Return 0.0889 0.1094 0.0950 0.0930 0.1117 0.1126 0.1385 0.1342 0.1300 0.1258
Annual Volatility 0.1504 0.1703 0.2064 0.1826 0.1686 0.1686 0.1883 0.1883 0.1883 0.1884
Annual Sharpe 0.5912 0.6422 0.4602 0.5093 0.6625 0.6676 0.7355 0.7129 0.6904 0.6679
Max. Drawdown 0.5256 0.5464 0.5995 0.5966 0.5617 0.4967 0.4825 0.4862 0.4899 0.4935
Annual Sortino 0.9487 1.0245 0.8132 0.8327 1.0657 1.0693 1.2190 1.1832 1.1477 1.1124
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Recent COVID-19 Period 2020-2021

Table – Portfolio Statistics

Statistics (2020-2021) S&P
500 1/N Bottom 5 41-55 21-40 6-20 Top 5 5BPs

Top 5 Net
10BPs 15BPs

Panel II.A.
Equally-Weighted Returns
Annual Return 0.2162 0.2847 0.1915 0.3138 0.1925 0.3350 0.5040 0.4957 0.4875 0.4794
Annual Volatility 0.1954 0.3147 0.3623 0.3300 0.3336 0.2837 0.3324 0.3322 0.3320 0.3319
Annual Sharpe 1.1067 0.9049 0.5287 0.9507 0.5769 1.1807 1.5163 1.4922 1.4683 1.4444
Max. Drawdown 0.2000 0.3524 0.4569 0.3568 0.3896 0.2750 0.3173 0.3181 0.3190 0.3198
Annual Sortino 1.8400 1.5121 1.0014 1.6386 1.0437 2.0379 2.4006 2.3646 2.3287 2.2931
Panel II.B.
Capital-Weighted Returns
Annual Return 0.2162 0.2099 0.1955 0.1335 0.2396 0.2126 0.3073 0.3021 0.2970 0.2920
Annual Volatility 0.1954 0.2457 0.3273 0.2792 0.2361 0.2240 0.2410 0.2410 0.2410 0.2409
Annual Sharpe 1.1067 0.8545 0.5973 0.4782 1.0147 0.9495 1.2749 1.2538 1.2327 1.2117
Max. Drawdown 0.2000 0.2996 0.4178 0.3489 0.2835 0.2581 0.2300 0.2313 0.2327 0.2340
Annual Sortino 1.8400 1.3506 1.0135 0.8278 1.6604 1.4684 2.1066 2.0694 2.0325 1.9959
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Returns on Portfolios Selected by Meta-strategy

Table – Alphas of the Strategy
Statistics Bottom 5 41-55 21-40 6-20 Top 5 Top-Bottom

Panel A. Equally-Weighted Returns
Predicted return 0.0019 0.0067 0.0096 0.0125 0.0172 0.0177
Excess return 0.0076 ** 0.0091 *** 0.0095 *** 0.0114 *** 0.0130 *** 0.0079 ***

(2.0564) (2.8666) (3.0509) (3.6262) (3.9595) (4.2205)
CAPM alpha 0.0014 0.0032 0.0036 * 0.0054 *** 0.0071 *** 0.0081 ***

(0.5288) (1.4026) (1.8481) (2.7691) (3.0285) (4.1263)
3F alpha -0.0016 0.0004 0.0010 0.0028 *** 0.0047 *** 0.0088 ***

(-0.9944) (0.2670) (0.9254) (2.6207) (2.9736) (4.5865)
4F alpha 0.0010 0.0022 0.0026 *** 0.0039 *** 0.0053 *** 0.0068 ***

(0.5971) (1.6141) (2.6925) (3.4015) (3.0470) (4.0487)
Panel B. Capital-Weighted Returns
Predicted return 0.0008 0.0055 0.0084 0.0116 0.0178 0.0195
Excess return 0.0094 *** 0.0089 *** 0.0101 *** 0.0101 *** 0.0124 *** 0.0054 **

(3.0388) (3.6618) (4.1568) (4.5633) (4.8145) (2.4713)
CAPM alpha 0.0032 0.0027 * 0.0043 *** 0.0043 *** 0.0064 *** 0.0056 **

(1.3212 (1.8506) (3.2495) (4.6785) (3.7073) (2.5342)
3F alpha 0.0003 0.0001 0.0019 ** 0.0022 *** 0.0042 *** 0.0064 ***

(0.1955) (0.1330) (2.3733) (2.7900) (2.9251) (3.3200)
4F alpha 0.0020 0.0010 0.0023 *** 0.0023 *** 0.0035 ** 0.0039 **

(1.3503) (1.0504) (2.6683) (3.0013) (2.2045) (2.0953)
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Conclusions

We perform a comparative analysis of machine learning
methods for measuring sector risk premia, and demonstrate
large economic gains from using machine learning for sector
forecasting.
We develop a framework to assemble different forecasting
models and explain how to use the resulting meta-strategy
in portfolio optimization.
The developed meta strategy delivers systemically high
R2

oos across all the sectors.
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Thank You !

Paweł Polak
pawel.polak@stonybrook.edu
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