Option pricing bottom up and top down

Liuren Wu

IAQF & Thalesians Seminar Series

Centralized *bottom-up* option pricing

- This classic approach is similar to that in classic physics
 - Identify the smallest *common denominator*
 - The risk-neutral dynamics
 - The pricing of Arrow-Debreu securities, characteristic function
 - Centralize the valuation of all contracts with the common denominator
 - Take expectation of future payoffs on the same dynamics
 - Price the payoffs as a basket of spanning instruments
- The approach offers *cross-sectional consistency*
 - The common denominator provides a *single yardstick* for valuing all derivatives built on it.
 - The valuations on different contracts are consistent with one another, in the sense that they are all derived from the same yardstick.
 - Even if the yardstick is wrong, the valuations remain "consistent" with one another *They are just consistently wrong!*

Time-changed Lévy process as an assembly line

- It is an easy-to-use framework to assemble/integrate different parts together:
 - Model each economic shock or the innovation of each factor with a Lévy process (Xⁱ_t)
 - Model the stochastic intensity or stochastic impact of each shock with stochastic time change (Xⁱ_{Tt})
- Indulge in a researcher's ambition of building *a model of everything*: World = $\sum X_{T_t}^i$
 - The key premise: *Everything is related*
 - The key objective: Identify the linkages, consolidate the information
- A good starting point for financing engineering of real applications
 - Build market making/valuation platforms
 - Extract key information from diverse sources
 - Understand information transmission mechanisms
 - Identify (cross-)market arbitrage opportunities

A foolish consistency is the hobgoblin of little minds ...

- It is difficult to get everything under one blanket
 - Pricing long-dated contracts requires unrealistically long projections.
 - Short-term variations of long-dated contracts often look incompatible with long-run (stationarity) assumptions.
- It is not always desirable to *chain* everything together
 - Error-contagion: Disturbance on one contract affects everything else.
 - Pooling is useful for information consolidation, but can be limiting for individual contract pricing/investment, which needs domain expertise.
 - Jack of all trades, master of none.
- Forcing "consistency" with a mis-specified model often leads to the *divergence and disengagement* between pricing and risk management:
 - The force-fitted "dynamics" look nothing like actual behaviors.
 - While pricing team works on a sophisticated model, risk management relies on simple but more robust BMS greeks.

The approach starts top down with *a particular option contract i*, not bottom up from some common denominator (dynamics):

- *Represent* the value of the option contract via the Black-Merton-Scholes (BMS) pricing equation, $B^{i}(t, S_{t,i}, I_{t,i})$
 - BMS was also a bottom-up option pricing model, but we are not using it as a bottom-up model, but just as a *value representation* function.
 - The representation *does not decompose* the price into building blocks
 - but *summarizes/characterizes* its main sources of variation in *observable variables* (*S*_{*t*,*i*}, *l*_{*t*,*i*})
 - "symptoms" of a patient (medicine)
 - "features" of an object (machine learning)

Perform P&L attribution against the observable variation sources (not against hidden factors/state variables):

$$\begin{aligned} dB^{i}(t,S_{t,i},I_{t,i}) &= \begin{bmatrix} B^{i}_{t}dt + B^{i}_{S}dS_{t,i} + B^{i}_{I}dI_{t,i} \end{bmatrix} \\ &+ \begin{bmatrix} \frac{1}{2}B^{i}_{SS}(dS_{t,i})^{2} + \frac{1}{2}B^{i}_{II}(dI_{t,i})^{2} + B^{i}_{IS}(dS_{t,i}dI_{t,i}) \end{bmatrix} \cdots \end{aligned}$$

- Work in forward space to hide financing (rates)
- Normalize $S_{t,i} = 1$ to turn the excess P&L into excess return.
- Stop at 2nd order when the *next moves* on $S_{t,i}$ and $I_{t,i}$ are diffusive.
- Adding higher order price changes can potentially be useful to differentiate different types of skews/smiles, subject to identification...
- I use continuous time notation, but it can be just a Taylor expansion of discrete returns over some horizon...

The no dynamic arbitrage condition

Take risk-neutral expectation and apply the no-dynamic-arbitrage condition (NDA) that the expected risk-neutral excess return be 0:

$$-B_{t}^{i} = \frac{1}{2} B_{SS}^{i} S_{t}^{2} \mathbf{v}_{t,i} + B_{l}^{i} I_{t,i} \mu_{t,i} + \frac{1}{2} B_{ll}^{i} I_{t,i}^{2} \omega_{t,i} + B_{lS}^{i} I_{t,i} S_{t} \gamma_{t,i}$$
(1)
• $(\mu_{t}^{i}, \sigma_{t}^{2}, \omega_{t}^{i}, \gamma_{t}^{i})$ are the time-t conditional risk-neutral moments:
 $\mu_{t,i} \equiv \frac{1}{dt} \mathbb{E}_{t}^{\mathbb{Q}} \left[\frac{d_{t,i}}{I_{t,i}} \right] /, \quad \mathbf{v}_{t,i} \equiv \frac{1}{dt} \mathbb{E}_{t}^{\mathbb{Q}} \left[\left(\frac{dS_{t,i}}{S_{t,i}} \right)^{2} \right],$
 $\omega_{t,i} \equiv \frac{1}{dt} \mathbb{E}_{t}^{\mathbb{Q}} \left[\left(\frac{d_{t,i}}{I_{t,i}} \right)^{2} \right], \quad \gamma_{t,i} \equiv \frac{1}{dt} \mathbb{E}_{t}^{\mathbb{Q}} \left[\left(\frac{dS_{t,i}}{S_{t,i}}, \frac{dI_{t,i}}{I_{t,i}} \right) \right].$

- (1) looks similar to a PDE from a bottom-up model, except
 - A bottom-up model solves the unknown value function from the PDE.
 - In (1), we start with a known BMS representation, with known sensitivities, for a given contract *i*.
- (1) is a *pricing equation* in terms of the *expected behaviors* $(\mu_{t,i}, v_{t,i}, \omega_{t,i}, \gamma_{t,i})$ of the observable risk sources $(S_{t,i}, I_{t,i})$
- NDA requires the contract be priced to balance its time decay with its risk-neutral expected excess returns from the 4 risk sources.

6

Breakeven contribution of each risk source

• Taking *statistical expectation*, we decompose the expected excess return (EER) into the summation of risk exposures × risk magnitudes

$$\mathsf{EER} = B_{t}^{i} + \frac{1}{2} B_{SS}^{i} S_{t}^{2} v_{t,i}^{\mathbb{P}} + B_{I}^{i} I_{t,i} \mu_{i,t}^{\mathbb{P}} + \frac{1}{2} B_{II}^{i} I_{t,i}^{2} \omega_{t,i}^{\mathbb{P}} + B_{IS}^{i} I_{t,i} S_{t} \gamma_{t,i}^{\mathbb{P}}$$

• If EER=0, we expect to *breakeven* on the contract. The *breakeven contribution* from each source:

$$\left(B_{I}^{i}I_{t,i}\mu_{i,t}^{\mathbb{P}}, \quad, \frac{1}{2}B_{SS}^{i}S_{t}^{2}v_{t,i}^{\mathbb{P}}, \quad \frac{1}{2}B_{II}^{i}I_{t,i}^{2}\omega_{t,i}^{\mathbb{P}}, \quad B_{IS}^{i}I_{t,i}S_{t}\gamma_{t,i}^{\mathbb{P}}\right)$$

• When EER is non-zero, the risk premium can also be attributed to each risk source

$$\begin{split} \mathsf{EER} &\equiv \frac{1}{dt} (\mathbb{E}^{\mathbb{P}} - \mathbb{E}^{\mathbb{P}}] (dB^{i}) \quad (\mathsf{risk premium}) \\ &= \frac{1}{2} B_{SS}^{i} S_{t}^{2} \left(v_{t,i}^{\mathbb{P}} - v_{t,i} \right) + B_{l}^{i} I_{t,i} \left(\mu_{i,t}^{\mathbb{P}} - \mu_{t,i} \right) \\ &+ \frac{1}{2} B_{ll}^{i} I_{t,i}^{2} \left(\omega_{t,i}^{\mathbb{P}} - \omega_{t,i} \right) + B_{lS}^{i} I_{t,i} S_{t} \left(\gamma_{t,i}^{\mathbb{P}} - \gamma_{t,i} \right) \end{split}$$

It all goes from here

How to apply this decentralized top-down pricing relation in practice?

$$-B_{t}^{i} = \frac{1}{2}B_{SS}^{i}S_{t}^{2}\mathbf{v}_{t,i} + B_{I}^{i}I_{t,i}\mu_{t,i} + \frac{1}{2}B_{II}^{i}I_{t,i}^{2}\omega_{t,i} + B_{IS}^{i}I_{t,i}S_{t}\gamma_{t,i}$$

- Like machine learning, the pricing relation uses a very simple "basis function" (the BMS function), but achieves great flexibility via localization.
- Too much flexibility: The time decay of a contract can be balanced by 4 sources of expected gains.
- Historical centralizing efforts fall on old habits: Impose common risk-neutral implied vol dynamics across contracts
 - Carr & Wu (2016): across the whole implied vol surface
 - Arsland et al (2009), Carr, Wu, Zhang (2022): per maturity
 - Carr & Wu (2020): nearby contracts

All men are not born equal

We unite the decentralized pricing not by assuming common dynamics, but by

explicitly recognizing their behavior difference

- Use historical moment estimators as model inputs $(\hat{\mu}_{t,i}, \hat{\nu}_{t,i}, \hat{\omega}_{t,i}, \hat{\gamma}_{t,i})$
- anchor the *breakeven contribution* of each risk source $(B_{I}^{i}I_{t,i}\widehat{\mu}_{t,i}, \frac{1}{2}B_{SS}^{i}S_{t,i}^{2}\widehat{v}_{t,i}, \frac{1}{2}B_{II}^{i}I_{t,i}^{2}\widehat{\omega}_{t,i}, B_{IS}^{i}I_{t,i}S_{t,i}\widehat{\gamma}_{t,i})$

Pricing their differences fairly

- in accordance (in proportion) to the different risk levels
 - Supply-demand determines the pricing of a single product Investors can add a premium/discount in the pricing on each risk source.
 - Statistical arbitrage trading across contracts can force the pricing on each risk type/source to converge in the limit (Ross, 76).
- Devils are in the details how to be fair...

Different but fair: A linear option pricing model

- $\begin{aligned} -B_t^i &= \left(\frac{\beta_{V,t}\widehat{\omega}_{t,i} + \beta_{\mu,t}\widehat{\mu}_{t,i}}{+\beta_{G,t}\widehat{v}_{t,i}\left[\frac{1}{2}B_{SS}^iS_{t,i}^2\right] + \beta_{O,t}\widehat{\omega}_{t,i}\left[\frac{1}{2}B_{II}^iI_{t,i}^2\right] + \frac{\beta_{A,t}}{\sqrt{\widehat{v}_{t,i}\widehat{\omega}_{t,i}}\left[B_{IS}^iS_{t,i}I_{t,i}\right]} \end{aligned}$
- Sensitivities × historical moment estimators capture actual/historical behavior differences across contracts
- Common coefficients β impose *fair pricing* in proportion to risk levels:
 - Volatility risk premium: $\mu_{t,i} = \mu_{t,i}^{\mathbb{P}} + \beta_{V,t} \widehat{\omega}_{t,i}$ for all *i* (proportional to risk)
 - **2** Statistical trend forecast: $\mu_{t,i}^{\mathbb{P}} = \beta_{\mu,t} \hat{\mu}_{t,i}$ for all *i* (momentum/reversal)
 - Sisk-neutral return variance: $v_t = \beta_{G,t} \hat{v}_{t,i}$ for all *i* (vary around historical estimators)
 - **(a)** Risk-neutral implied vol change variance: $\omega_{t,i} = \beta_{O,t} \widehat{\omega}_{t,i}$ for all *i* (vary around historical estimators)
 - So Risk-neutral covariance: $\gamma_{t,i} = \beta_{A,t} \sqrt{\hat{v}_{t,i}\hat{\omega}_{t,i}}$ for all *i* (proportional to historical variance)

Alternative representation in the implied volatility space

- The linear model is in the *expected excess return* space. People tend to be more familiar with the implied vol surface behavior.
- For vanilla options, risk exposures are all proportional to cash gamma.Divide the relation by cash gamma leads to an implied volatility representation:

$$\begin{array}{rcl} l_{t,i}^2 &=& \beta_{G,t} \widehat{v}_{t,i} \\ &+& 2 \left(\beta_{V,t} \widehat{\omega}_{t,i} + \beta_{\mu,t} \widehat{\mu}_{t,i} \right) l_{t,i}^2 \tau \\ &+& \beta_{O,t} \widehat{\omega}_{t,i} (z_+ z_-) + 2 \beta_{A,t} \sqrt{\widehat{v}_{t,i} \widehat{\omega}_{t,i}} \left(z_+ \right) \end{array}$$

- Implied variance = risk-neutral return variance at short-term $\tau \downarrow 0$ and at-the-money $z_+ = 0$, ... plus adjustments
- along maturity for volatility risk premium and trend,
- along moneyness $(z_{\pm} = \ln K / S_t \pm \frac{1}{2} I_t^2 \tau)$ for implied vol variation (quadratic in z_+z_-) and covariation (linear in z_+)
- The common pricing coefficients β_t generate broad, overall adjustments on the implied volatility level, slopes, and curvature.
- The moment estimators $(\widehat{\omega}_{t,i}, \widehat{\mu}_{t,i})$ are the key drivers on the fine details of the implied volatility (term structure, skew/smile) shape. Liuren Wu (Baruch) Option pricing bottom up and top down 2023/05/09

Linear regression pricing of options

 $y_{t,i} = X_{t,i} \mathbf{b}_t + e_{t,i}$

- The dependent variable is the time decay, $y_{t,i} = -B_t^i$.
- The regressors are historical risk estimator-adjusted BMS sensitivities:
 $$\begin{split} X_{t,i} &= \\ \begin{bmatrix} B_{I}^{i}I_{t,i}\widehat{\omega}_{t,i}, & B_{I}^{i}I_{t,i}\widehat{\mu}_{t,i}, & \frac{1}{2}B_{SS}^{i}S_{t,i}^{2}\widehat{v}_{t,i}, & \frac{1}{2}B_{II}^{i}I_{t,i}^{2}\widehat{\omega}_{t,i}, & B_{IS}^{i}S_{t,i}I_{t,i}\sqrt{\widehat{v}_{t,i}\widehat{\omega}_{t,i}} \end{bmatrix}. \end{split}$$
- The slope estimates at each date $\mathbf{b}_t = [\beta_{V,t}, \beta_{\mu,t}, \beta_{G,t}, \beta_{O,t}, \beta_{A,t}]$ — the *common* coefficients across all contracts on that date.
- Under the null of no premium, no prediction, and no forecasting bias, the *null breakeven values* are $\mathbf{b}_t^0 = \begin{bmatrix} 0 & 0 & 1 & 1 & \widehat{\rho}_t \end{bmatrix}$.
- The time-t common market pricing of risk:

$$\eta_t = \mathbf{b}_t - \mathbf{b}_t^0 = [\beta_{V,t}, \quad \beta_{\mu,t}, \quad \beta_{G,t} - 1, \quad \beta_{O,t} - 1, \quad \beta_{A,t} - \widehat{\rho}_t]$$

• The regression residual *e*_{*t*,*i*} captures the relative mispricing on each contract in the expected excess return space.

Empirical analysis on currency options

OTC option implied volatility quotes on dollar prices of yen and pound

- 1996/1/24 2022/10/13, 6,702 business days
- 5 delta (10, 25, 50, 75, 90) \times 5 maturities (1, 3, 6, 9, 12 months)

• Volatilities tend to spike up, and then calm down slowly.

- Yen option implied volatilities are on average higher, and show larger cross-contract dispersion.
- The level and dispersion of pound option implied volatilities picked up in the second half.

Construct historical moment estimators

- Create *daily* percentage changes on *fixed-contract* forward price and implied volatility $(dS_{t,i}, dI_{t,i})$ from *floating* series
 - Need interpolation ... more accurate over short-term change
- Construct historical moment estimators with horizons of 1,3,12 months.
- Cross-contract smoothing/averaging: Implied vol surface should be smooth, so should their moment estimators.
 - Moment estimators are embedded in the regressors. Large estimation errors can cause identification issues.
- Under different market conditions, future moments are predicted the best with historical estimators of different horizons.
 - *Market knows the best*: At each date, pick the horizon with the best pricing performance mainly to better accommodate market expectation of the *term structure* variation.
 - If you have better forecasts (better methods), we can use them.

The average implied volatility surface variation $(\hat{\omega})$

• The different lines in each panel are for different delta (moneyness).

- At the same maturity, the variance estimates are similar across delta.
- The average variance of implied vol change $\widehat{\omega}$ declines strongly with maturity, with a strong curvature.
 - This $\hat{\omega}$ term structure pattern determines the shape of the implied volatility term structure via $(\beta_{V,t}\hat{\omega}_{t,i} + \beta_{\mu,t}\hat{\mu}_{t,i}) I_{t,i}^2 \tau$
 - It also contributes to the shape of the smile/skew term structure shape via $\beta_{O,t} \widehat{\omega}_t^i(z_+z_-)$ and $\beta_{A,t} \sqrt{\widehat{\omega}_t^i \widehat{v}_{t,i}}(z_+)$

Liuren Wu (Baruch)

Pricing performance

- Daily cross-sectional OLS regressions on the pricing model, from 1997 to 2022, for 6,450 business days
- Median percentage variance contribution from each risk source: $VC_{k,t} = [\mathbf{b}_t]_k [(X_t^{\top} X_t) \mathbf{b}_t]_k / (\mathbf{y}_t^{\top} \mathbf{y}_t)$, sum to R^2

	yen	pound
Gamma	81.95	79.40
Vega	21.58	24.79
Trend	-7.71	-6.18
Volga	4.28	3.43
Vanna	0.58	-0.15
R^2	99.91	99.94

- · Gamma has the largest variance contribution, followed by vega
- The model explains the cross-sectional variation of expected option excess return extremely well, with median $R^2 > 99.9\%$.
- Pricing performance is better than most jump-diffusion stochastic vol models...

Risk-targeting portfolios

- The linear model structure makes it extremely simple to create option portfolios to either *hedge or target* a specific risk exposure.
- Let H_t denote is the $(N \times 6)$ matrix of *risk-adjusted* exposures and errors,

$$H_t \equiv \begin{bmatrix} X_t & \mathbf{e}_t \end{bmatrix}$$

- BMS greeks tend to be more stable than exposure estimates from a complicated jump-diffusion stochastic vol model...
- X_t adjusts BMS greeks with observed risk magnitudes for each contract works well for actual risk management
- Minimize portfolio residual return variance, subject to the targeted exposure

$$\min_{\mathbf{w}_t} \quad \mathbf{w}_t^\top \boldsymbol{\Sigma}_t \mathbf{w}_t \quad \text{s.t.} \quad \boldsymbol{H}_t^\top \mathbf{w}_t = \mathbf{d},$$

 $\Rightarrow \mathbf{w}_t = \Sigma_t^{-1} H_t \left(H_t^\top \Sigma_t^{-1} H_t \right)^{-1} \mathbf{d}.$

• Assume $\Sigma_t = \sigma_t^2 I$ on the errors, we have $\mathbf{w}_t = H_t \left(H_t^\top H_t \right)^{-1} \mathbf{d}$.

Statistical arbitrage trading against regression residuals

- Setting $d = 1_6$ constructs a portfolio that is neutral to all risk exposures, but with a unit short exposure to the pricing error.
- The portfolio amounts to sell(buy) over(under)-priced options while maintaining neutral to all risk exposures.
- At each date, we apply the portfolio weight to the delta-hedged excess returns over the next business day from shorting each contract, $r_{t+1,6} = \mathbf{w}_{t,6}^{\top} \mathbf{r}_{t+1}$.

Statistics	A. Fixed error		B. Fixe	B. Fixed notional		
	yen	pound	yen	pound		
Mean	4.48	5.65	0.56	0.44		
Std	0.81	0.88	0.11	0.08		
IR	5.56	6.43	5.00	5.81		

• The high IR suggests that the residuals are highly reverting, validating the statistical arbitrage theory.

Predict risk portfolio returns with market pricing estimates

- Setting d = l_k, for k = 1, · · · , 5 generates risk-targeting portfolios for each of the risk exposures.
- Market pricing estimates η_t reflect whether the market is charging a premium or discount on the risk dimension relative to the breakeven contribution.
- We expect the market pricing estimates to predict the ex post realized excess returns on the corresponding risk portfolio:

$$r_{t+1,k} = a_k + b_k \eta_{t,k} + e_{t+1,k}.$$

	yen					pound					
		a _k		b _k	R^2			a _k		b _k	R^2
Gamma	-1.76	(-5.67)	1.31	(6.60)	1.00	-	1.00	(-5.97)	1.50	(13.45)	2.47
Vega	-1.08	(-1.63)	5.24	(25.97)	9.32		0.03	(0.06)	3.37	(19.97)	4.61
Trend	0.34	(0.65)	5.39	(28.60)	11.27	-	0.68	(-1.46)	3.20	(18.04)	4.15
Vanna	-0.03	(-0.59)	1.02	(10.80)	1.78		0.13	(3.30)	1.45	(11.35)	1.98
Volga	0.02	(0.38)	2.56	(10.47)	1.55	-	0.00	(-0.09)	3.49	(18.68)	3.30

with the null: $a_k = 0$, $b_k > 0$.

Slopes are strongly positive for all risk portfolios (*t*-values in parentheses). Intercepts are mostly insignificant, with a few exceptions.

Liuren Wu (Baruch)

Visualize the predictive relations

- Market pricing estimates on all risk exposures *positively* predict future excess returns of the corresponding risk-targeting portfolio, with little bias.
 - The historical moment estimators create useful *breakeven anchors* for identifying the market pricing on each risk source.

Harvesting the time-varying risk premium

based on the market pricing estimates

- The market pricing estimate on each risk source represents the excess return investors *expect* to make on the risk-targeting portfolio.
 - We can decide which direction to take on each portfolio at each date based on the sign/size of the market pricing estimate.
- We can harvest the time-varying risk premium on each risk source by timing the risk portfolio investment based on the market pricing estimates.
 - Normalize the risk-target portfolio and the market pricing estimates to fixed notional amount (\$100).
 - Set the median notional (absolute) weight to \$100 corresponding to the median value of the absolute market pricing estimates.
 - Set the notional weight at each date proportional to the normalized market pricing estimate: $n_{k,t} = \eta_{k,t}/\overline{|\eta|}_{k,t}$.
 - $\bullet\,$ Limit the investment to be within ± 2 times the median notional amount.
 - No forecasting regression involved in this exercise.

Harvesting risk premiums from risk-targeting portfolios

Risk	A. Fixe	d notion	al short	B. M	arket tin	ning			
Target	Mean	Std	IR	Mean	Std	IR			
	yen								
Vega	0.29	0.24	1.20	0.80	0.39	2.08			
Trend	-0.14	0.19	-0.74	0.77	0.34	2.26			
Gamma	-0.34	0.24	-1.42	0.34	0.38	0.91			
Volga	0.20	0.20	1.00	0.51	0.31	1.65			
Vanna	0.07	0.20	0.35	0.49	0.33	1.48			
	pound								
Vega	0.17	0.16	1.10	0.47	0.24	1.97			
Trend	0.01	0.13	0.05	0.44	0.21	2.05			
Gamma	-0.24	0.16	-1.52	0.28	0.26	1.05			
Volga	0.24	0.13	1.91	0.43	0.18	2.34			
Vanna	-0.05	0.13	-0.39	0.32	0.20	1.62			

- Market timing turns all risk portfolios to profitability, with good IR.
- Stat arb trading on pricing errors and risk-premium harvesting on market pricing estimates can both be highly profitable.

Concluding remarks

- History repeats itself in cycles of centralization for consolidation and decentralization for flexibility.
- We build a bridge between the two and centralize the decentralized pricing of option contracts via sequential application of two arbitrage arguments:
 - No dynamic arbitrage between an option and its underlying \rightarrow a decentralized pricing relation on a single option contract
 - No statistical arbitrage across option contracts on a given risk type
 → unite the decentralized pricing of all contracts with common market
 pricing for each decentralized risk source
- The framework captures the strength of both:
 - *Decentralization*: Unique features of different contracts, domain expertise of different investors
 - *Centralization*: Not by disregarding dynamics differences, but by imposing pricing consistency
- These efforts lead to a simple linear option pricing relation that can both *price* and *risk manage* the variation of vanilla/exotic option contracts.