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Centralized option pricing

@ This classic approach is similar to that in classic physics
o lIdentify the smallest common denominator
o The risk-neutral dynamics
@ The pricing of Arrow-Debreu securities, characteristic function

o Centralize the valuation of all contracts with the common denominator
o Take expectation of future payoffs on the same dynamics

@ Price the payoffs as a basket of spanning instruments

@ The approach offers cross-sectional consistency

e The common denominator provides a single yardstick for valuing all
derivatives built on it.

o The valuations on different contracts are consistent with one another,
in the sense that they are all derived from the same yardstick.

e Even if the yardstick is wrong, the valuations remain*

consistent” with
one another — They are just consistently wrong!



Time-changed Lévy process as an assembly line

@ It is an easy-to-use framework to assemble/integrate different parts together:

o Model each economic shock or the innovation of each factor
with a Lévy process (X{)

e Model the stochastic intensity or stochastic impact of each shock
with stochastic time change (X7.)

@ Indulge in a researcher’'s ambition of building a model of everything:
World = X7"-t
e The key premise: Everything is related

o The key objective: ldentify the linkages, consolidate the information

@ A good starting point for financing engineering of real applications
e Build market making/valuation platforms
e Extract key information from diverse sources

Understand information transmission mechanisms

Identify (cross-)market arbitrage opportunities
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@ It is difficult to get everything under one blanket
e Pricing long-dated contracts requires unrealistically long projections.

e Short-term variations of long-dated contracts often look incompatible
with long-run (stationarity) assumptions.

@ |t is not always desirable to chain everything together

e Error-contagion: Disturbance on one contract affects everything else.

o Pooling is useful for information consolidation, but can be limiting for
individual contract pricing/investment, which needs domain expertise.

e Jack of all trades, master of none.
@ Forcing “consistency” with a mis-specified model often leads to the
divergence and disengagement between pricing and risk management:

o The force-fitted “dynamics” look nothing like actual behaviors.

e While pricing team works on a sophisticated model, risk management
relies on simple but more robust BMS greeks.
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Decentralized option pricing

The approach starts top down with a particular option contract i,
not bottom up from some common denominator (dynamics):

@ Represent the value of the option contract via the Black-Merton-Scholes
(BMS) pricing equation, B(t, S;,i, It.;)

e BMS was also a bottom-up option pricing model, but we are not using
it as a bottom-up model, but just as a value representation function.

o The representation does not decompose the price into building blocks

e but summarizes/characterizes its main sources of variation in
observable variables (S i, It.;)
— “symptoms” of a patient (medicine)
— “features” of an object (machine learning)



The top-down P&L attribution

@ Perform P&L attribution against the observable variation sources
(not against hidden factors/state variables):

dBi (t7 St,i, /t,i) -
+

Bidt + BLdS;; + Bjdl, ;]
3Bis (dSe,i)* + 2Bi (dlei)* + Bis (dSt’,-dlt,,-)} e

e Work in forward space to hide financing (rates)
e Normalize S;; =1 to turn the excess P&L into excess return.
e Stop at 2nd order when the next moves on S;; and I ; are diffusive.

e Adding higher order price changes can potentially be useful to
differentiate different types of skews/smiles, subject to identification...

e | use continuous time notation, but it can be just a Taylor expansion of
discrete returns over some horizon...



The no dynamic arbitrage condition

© Take risk-neutral expectation and apply the no-dynamic-arbitrage condition
(NDA) that the expected risk-neutral excess return be 0:

1
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o (ui,o2,wi,~i) are the time-t conditional risk-neutral moments:
dly ; ds, ;i\ 2
Ut,iE%E‘?[ - :|/a thEdz]EQ[(S;Y,-)]'
dly i\ 2 ds, ; diy;
wei = LES {( ,;;_ ) ] s e = SED [( 5:’_ ﬁ)} .
o (1) looks similar to a PDE from a bottom-up model, except
@ A bottom-up model solves the unknown value function from the PDE.
@ In (1), we start with a known BMS representation, with known
sensitivities, for a given contract i.
o (1) is a pricing equation in terms of the expected behaviors
(f4t,i5 Ve.iy Wr.iyYe,i) of the observable risk sources (S; ;, It;)
o NDA requires the contract be priced to balance its time decay with its

risk-neutral expected excess returns from the 4 risk sources.
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Breakeven contribution of each risk source

@ Taking statistical expectation, we decompose the expected excess return
(EER) into the summation of risk exposures x risk magnitudes

7 ‘ S 1 . . ‘
EER = B; + EBéSSE Ve + Bl i o + ?B;/ 12wt + Bisle,iSevr.

e If EER=0, we expect to breakeven on the contract.
The breakeven contribution from each source:

‘ 1 1., i
(B;It,i,U/I,'Pjt, BSSS2Vt i EB”IE”.WE"’ BISIt,iSt7£i>
o When EER is non-zero, the risk premium can also be attributed to each
risk source
EER = %(“7 EF](dB") (risk premium)
= 3B5sS? (vi; — vei) + Bilei (piy — pie.i)
+ %B//lf,(' ‘,*wt/)JFB/s/t/St( ,*T't.i)



It all goes from here

How to apply this decentralized top-down pricing relation in practice?

;1 - 1 . .
*Bt, - EB,SSS{?VT./ + B// /r.i//t./' + EB;/IE,,'O%./ e B/,s/t.ist”st./

@ Like machine learning, the pricing relation uses a very simple “basis
function” (the BMS function), but achieves great flexibility via localization.

@ Too much flexibility: The time decay of a contract can be balanced by 4
sources of expected gains.

@ Historical centralizing efforts fall on old habits:
Impose common risk-neutral implied vol dynamics across contracts
o Carr & Wu (2016): across the whole implied vol surface
o Arsland et al (2009), Carr, Wu, Zhang (2022): per maturity
o Carr & Wu (2020): nearby contracts



We unite the decentralized pricing not by assuming common dynamics, but by
@ explicitly recognizing their behavior difference

o Use historical moment estimators as model inputs (f¢,i, Ve,i, @¢ i, Ve,i)

e anchor the breakeven contribution of each risk source
i 1pi c2 o 1pRi 2~ i ~
(Bils,ifitiy 3BssStiVei, 5Bl @ris  Bigh,iSt,Vt,i)

@ pricing their differences fairly

e in accordance (in proportion) to the different risk levels

o Supply-demand determines the pricing of a single product — Investors
can add a premium/discount in the pricing on each risk source.

e Statistical arbitrage trading across contracts can force the pricing on
each risk type/source to converge in the limit (Ross, 76).

@ Devils are in the details — how to be fair...



A linear option pricing model

—Bi = (Fv.@ei+ .cfiei) [Bile,] _ ;
+06.:Vei [3B5sSEi] + 00.:@ei [3B)IE] + Oae/Veie.i [BlsSt.ile.i]

@ Sensitivities x historical moment estimators capture actual/historical
behavior differences across contracts
@ Common coefficients 3 impose fair pricing in proportion to risk levels:
@ Volatility risk premium: p;; = MIE,' + Oy 1@y,; for all i (proportional to
risk)
Statistical trend forecast: jiy ; = /3, ; fir,; for all i (momentum /reversal)

Risk-neutral return variance: v, = ¢ ;v ; for all i (vary around
historical estimators)

Risk-neutral implied vol change variance: w¢; = 30 @, ; for all i (vary
around historical estimators)

© © o090

Risk-neutral covariance: ¢ = 34,4/t ily,; for all i (proportional to
historical variance)
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Alternative representation in the implied volatility space

@ The linear model is in the expected excess return space. People tend to be
more familiar with the implied vol surface behavior.

@ For vanilla options, risk exposures are all proportional to cash gamma.Divide
the relation by cash gamma leads to an implied volatility representation:
/t%; = [c.iVe
+ 2 (!5V.t@t,i + f/l.t//i\t,i) /E; T
+ V))O.tat,i(ZJrzf) + 28464/ Vt,i@t,i (Z+)
e Implied variance = risk-neutral return variance at short-term 7 | 0 and
at-the-money z;. =0, ... plus adjustments

e along maturity for volatility risk premium and trend,
o along moneyness (zx = In K/S; & 3127) for implied vol variation
(quadratic in z;z_) and covariation (linear in z.)

@ The common pricing coefficients [3; generate broad, overall adjustments on
the implied volatility level, slopes, and curvature.

@ The moment estimators (; ;, /i: ;) are the key drivers on the fine details of

the implied volatility iterm structure, skewismilei shape.



Linear regression pricing of options

Ye,i = Xt ibe + €
@ The dependent variable is the time decay, y; ; = —B!.

@ The regressors are historical risk estimator-adjusted BMS sensitivities:
Xei = . .
[ B/’ /t,iwt,i, B;It,iut,i, %85552 Vit i %B///2 Wt iy Bllsst,ilt,i\/ Vit iWt i } .

@ The slope estimates at each date by = [Bv ¢, B¢, 86t Bo,t, BAa,t]
— the common coefficients across all contracts on that date.

@ Under the null of no premium, no prediction, and no forecasting bias,
the null breakeven values are b? = [ 0011 p; ]

@ The time-t common market pricing of risk:
ne = by — b? = [Bv.t, Bues Ber—1, Bor—1, Bar— Pt

@ The regression residual e, ; captures the relative mispricing on each contract
in the expected excess return space.
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Empirical analysis on currency options

OTC option implied volatility quotes on dollar prices of yen and pound
@ 1996/1/24 — 2022/10/13, 6,702 business days
@ 5 delta (10, 25, 50, 75, 90) x 5 maturities (1, 3, 6, 9, 12 months)

yen pound

Implied volatility, %

@ Volatilities tend to spike up, and then calm down slowly.

@ Yen option implied volatilities are on average higher, and show larger
cross-contract dispersion.

@ The level and dispersion of pound option implied volatilities picked up in the
second half.
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Construct historical moment estimators

@ Create daily percentage changes on fixed-contract forward price and implied
volatility (dS; i, dly,;) from floating series

o Need interpolation ... more accurate over short-term change
@ Construct historical moment estimators with horizons of 1,3,12 months.
@ Cross-contract smoothing/averaging: Implied vol surface should be smooth,
so should their moment estimators.
e Moment estimators are embedded in the regressors. Large estimation
errors can cause identification issues.
@ Under different market conditions, future moments are predicted the best
with historical estimators of different horizons.

o Market knows the best: At each date, pick the horizon with the best
pricing performance — mainly to better accommodate market
expectation of the term structure variation.

e If you have better forecasts (better methods), we can use them.
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The average implied volatility surface variation (&)

yen pound

6 6
Maturity, Months Maturity, Months

@ The different lines in each panel are for different delta (moneyness).
@ At the same maturity, the variance estimates are similar across delta.

@ The average variance of implied vol change & declines strongly with
maturity, with a strong curvature.
e This & term structure pattern determines the shape of the implied
volatility term structure via (Bv tior; + Bu,efiei) 12, 7
e It also contributes to the shape of the smile/skew term structure shape

via B0t/ (z4z—) and fa /01, i(24)
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Pricing performance

@ Daily cross-sectional OLS regressions on the pricing model, from 1997 to
2022, for 6,450 business days

@ Median percentage variance contribution from each risk source:
VCi,e = [be]i [(Xe" Xe)beli/(y¢ ¥e), sum to R?

yen pound
Gamma 81.95 79.40
Vega 21.58 24.79
Trend -7.71 -6.18
Volga 4.28 3.43
Vanna 0.58 -0.15
R? 99.91 99.94

e Gamma has the largest variance contribution, followed by vega

e The model explains the cross-sectional variation of expected option
excess return extremely well, with median R? > 99.9%.

e Pricing performance is better than most jump-diffusion stochastic vol
models...
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Risk-targeting portfolios

@ The linear model structure makes it extremely simple to create option
portfolios to either hedge or target a specific risk exposure.
@ Let H,; denote is the (N x 6) matrix of risk-adjusted exposures and errors,

HtE[Xt et]

o BMS greeks tend to be more stable than exposure estimates from a
complicated jump-diffusion stochastic vol model...

e X; adjusts BMS greeks with observed risk magnitudes for each
contract — works well for actual risk management

@ Minimize portfolio residual return variance, subject to the targeted exposure

min w:tht s.t. Ht—rwt:d,

W¢
= w, = T H, (H S H,) .

o Assume ¥, = o2/ on the errors, we have w; = H, (H, Ht)fl d.
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Statistical arbitrage trading against regression residuals

@ Setting d = 14 constructs a portfolio that is neutral to all risk exposures,
but with a unit short exposure to the pricing error.

@ The portfolio amounts to sell(buy) over(under)-priced options while
maintaining neutral to all risk exposures.

@ At each date, we apply the portfolio weight to the delta-hedged excess
returns over the next business day from shorting each contract,

— w7
le+1,6 = Wy glFet1-

Statistics A. Fixed error B. Fixed notional

yen pound yen pound
Mean 4.48 5.65 0.56 0.44
Std 0.81 0.88 0.11 0.08
IR 5.56 6.43 5.00 5.81

@ The high IR suggests that the residuals are highly reverting, validating the
statistical arbitrage theory.
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Predict risk portfolio returns with market pricing estimates

@ Setting d = Iy, for k =1,--- |5 generates risk-targeting portfolios for each
of the risk exposures.

@ Market pricing estimates 7, reflect whether the market is charging a premium
or discount on the risk dimension relative to the breakeven contribution.

@ We expect the market pricing estimates to predict the ex post realized
excess returns on the corresponding risk portfolio:

Fep1,k = ak + bk + €1,k

with the null: a, =0, b, > 0.

yen pound
aj by R? ay by R?
Gamma -1.76 (-5.67) 1.31 (6.60) 1.00 -1.00 (-5.97) 150 (13.45) 247
Vega -1.08 (-1.63) 524 (25.97) 9.32 0.03 (0.06) 337 (1997) 461
Trend 034 (0.65) 539 (28.60) 11.27 -0.68 (-1.46) 3.20 (18.04) 4.15
Vanna -0.03 (-0.59) 1.02 (10.80) 1.78 0.13  (3.30) 145 (11.35) 198
Volga 0.02 (0.38) 2.56 (10.47 ) 1.55 -0.00 (-0.09) 3.49 (18.68) 3.30

Slopes are strongly positive for all risk portfolios (t-values in parentheses).
Intercepts are mostly insignificant, with a few exceptions.
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Visualize the predictive relations

A. Gamma Vega & trend

Portfolio return, %

Portfolio return, %
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@ Market pricing estimates on all risk exposures positively predict future excess
returns of the corresponding risk-targeting portfolio, with little bias.

o The historical moment estimators create useful breakeven anchors for
identifying the market pricing on each risk source.
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Harvesting the time-varying risk premium

based on the market pricing estimates
@ The market pricing estimate on each risk source represents the excess return
investors expect to make on the risk-targeting portfolio.

e We can decide which direction to take on each portfolio at each date
based on the sign/size of the market pricing estimate.

@ We can harvest the time-varying risk premium on each risk source by timing
the risk portfolio investment based on the market pricing estimates.

e Normalize the risk-target portfolio and the market pricing estimates to
fixed notional amount ($100).

o Set the median notional (absolute) weight to $100 corresponding to
the median value of the absolute market pricing estimates.

o Set the notional weight at each date proportional to the normalized
market pricing estimate: 1, ; = l/kf//‘,/‘k,t'

o Limit the investment to be within 2 times the median notional
amount.

e No forecasting regression involved in this exercise.
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Harvesting risk premiums from risk-targeting portfolios

Risk A. Fixed notional short B. Market timing
Target Mean Std IR Mean Std IR
yen
Vega 0.29 0.24 1.20 0.80 0.39 2.08
Trend -0.14 019 -0.74 0.77 0.34 2.26
Gamma -0.34 024 -1.42 0.34 0.38 0.91
Volga 0.20 0.20 1.00 0.51 0.31 1.65
Vanna 0.07 0.20 0.35 0.49 0.33 1.48
pound

Vega 0.17 0.16 1.10 0.47 0.24 1.97
Trend 0.01 0.13 0.05 0.44 0.21 2.05
Gamma -0.24 016 -1.52 0.28 0.26 1.05
Volga 024 0.13 1.91 0.43 0.18 2.34
Vanna -0.05 0.13  -0.39 0.32 0.20 1.62

@ Market timing turns all risk portfolios to profitability, with good IR.

@ Stat arb trading on pricing errors and risk-premium harvesting on market
pricing estimates can both be highly profitable.
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Concluding remarks

@ History repeats itself in cycles of centralization for consolidation and
decentralization for flexibility.

@ We build a bridge between the two and centralize the decentralized pricing
of option contracts via sequential application of two arbitrage arguments:

e No dynamic arbitrage between an option and its underlying
— a decentralized pricing relation on a single option contract

e No statistical arbitrage across option contracts on a given risk type
— unite the decentralized pricing of all contracts with common market
pricing for each decentralized risk source

@ The framework captures the strength of both:

e Decentralization: Unique features of different contracts, domain
expertise of different investors

e Centralization: Not by disregarding dynamics differences, but by
imposing pricing consistency

@ These efforts lead to a simple linear option pricing relation that can both
price and risk manage the variation of vanilla/exotic option contracts.



