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Centralized bottom-up option pricing

This classic approach is similar to that in classic physics

Identify the smallest common denominator

The risk-neutral dynamics

The pricing of Arrow-Debreu securities, characteristic function

Centralize the valuation of all contracts with the common denominator

Take expectation of future payoffs on the same dynamics

Price the payoffs as a basket of spanning instruments

The approach offers cross-sectional consistency

The common denominator provides a single yardstick for valuing all
derivatives built on it.

The valuations on different contracts are consistent with one another,
in the sense that they are all derived from the same yardstick.

Even if the yardstick is wrong, the valuations remain“ consistent” with
one another —They are just consistently wrong!
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Time-changed Lévy process as an assembly line

It is an easy-to-use framework to assemble/integrate different parts together:

Model each economic shock or the innovation of each factor
with a Lévy process (X i

t )

Model the stochastic intensity or stochastic impact of each shock
with stochastic time change (X i

Tt
)

Indulge in a researcher’s ambition of building a model of everything:
World =

∑
X i
Tt

The key premise: Everything is related

The key objective: Identify the linkages, consolidate the information

A good starting point for financing engineering of real applications

Build market making/valuation platforms

Extract key information from diverse sources

Understand information transmission mechanisms

Identify (cross-)market arbitrage opportunities
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A foolish consistency is the hobgoblin of little minds ...

It is difficult to get everything under one blanket

Pricing long-dated contracts requires unrealistically long projections.

Short-term variations of long-dated contracts often look incompatible
with long-run (stationarity) assumptions.

It is not always desirable to chain everything together

Error-contagion: Disturbance on one contract affects everything else.

Pooling is useful for information consolidation, but can be limiting for
individual contract pricing/investment, which needs domain expertise.

Jack of all trades, master of none.

Forcing “consistency” with a mis-specified model often leads to the
divergence and disengagement between pricing and risk management:

The force-fitted “dynamics” look nothing like actual behaviors.

While pricing team works on a sophisticated model, risk management
relies on simple but more robust BMS greeks.
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Decentralized top-down option pricing

The approach starts top down with a particular option contract i ,
not bottom up from some common denominator (dynamics):

1 Represent the value of the option contract via the Black-Merton-Scholes
(BMS) pricing equation, B i (t,St,i , It,i )

BMS was also a bottom-up option pricing model, but we are not using
it as a bottom-up model, but just as a value representation function.

The representation does not decompose the price into building blocks

but summarizes/characterizes its main sources of variation in
observable variables (St,i , It,i )
— “symptoms” of a patient (medicine)
— “features” of an object (machine learning)
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The top-down P&L attribution

2 Perform P&L attribution against the observable variation sources
(not against hidden factors/state variables):

dB i (t,St,i , It,i ) =
[
B i
tdt + B i

SdSt,i + B i
I dIt,i

]
+

[
1
2B

i
SS (dSt,i )

2 + 1
2B

i
II (dIt,i )

2 + B i
IS (dSt,idIt,i )

]
· · ·

Work in forward space to hide financing (rates)

Normalize St,i = 1 to turn the excess P&L into excess return.

Stop at 2nd order when the next moves on St,i and It,i are diffusive.

Adding higher order price changes can potentially be useful to
differentiate different types of skews/smiles, subject to identification...

I use continuous time notation, but it can be just a Taylor expansion of
discrete returns over some horizon...

Liuren Wu (Baruch) Option pricing bottom up and top down 2023/05/09 6



The no dynamic arbitrage condition

3 Take risk-neutral expectation and apply the no-dynamic-arbitrage condition
(NDA) that the expected risk-neutral excess return be 0:

−B i
t =

1

2
B i
SSS

2
t vt,i + B i

I It,iµt,i +
1

2
B i
II I

2
t,iωt,i + B i

IS It,iStγt,i (1)

(µi
t , σ

2
t , ω

i
t , γ

i
t) are the time-t conditional risk-neutral moments:

µt,i ≡ 1
dt

EQ
t

[
dIt,i
It,i

]
/, vt,i ≡ 1

dt
EQ
t

[(
dSt,i
St,i

)2
]
,

ωt,i ≡ 1
dt

EQ
t

[(
dIt,i
It,i

)2
]
, γt,i ≡ 1

dt
EQ
t

[(
dSt,i
St,i

,
dIt,i
It,i

)]
.

(1) looks similar to a PDE from a bottom-up model, except
A bottom-up model solves the unknown value function from the PDE.

In (1), we start with a known BMS representation, with known
sensitivities, for a given contract i .

(1) is a pricing equation in terms of the expected behaviors
(µt,i , vt,i , ωt,i , γt,i ) of the observable risk sources (St,i , It,i )

NDA requires the contract be priced to balance its time decay with its
risk-neutral expected excess returns from the 4 risk sources.
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Breakeven contribution of each risk source

Taking statistical expectation, we decompose the expected excess return
(EER) into the summation of risk exposures × risk magnitudes

EER = B i
t +

1

2
B i
SSS

2
t v

P
t,i + B i

I It,iµ
P
i,t +

1

2
B i
II I

2
t,iω

P
t,i + B i

IS It,iStγ
P
t,i

If EER=0, we expect to breakeven on the contract.
The breakeven contribution from each source:(

B i
I It,iµ

P
i,t , ,

1

2
B i
SSS

2
t v

P
t,i ,

1

2
B i
II I

2
t,iω

P
t,i , B i

IS It,iStγ
P
t,i

)
When EER is non-zero, the risk premium can also be attributed to each
risk source

EER ≡ 1
dt (E

P − EP](dB i ) (risk premium)
= 1

2B
i
SSS

2
t

(
vP
t,i − vt,i

)
+ B i

I It,i
(
µP
i,t − µt,i

)
+ 1

2B
i
II I

2
t,i

(
ωP
t,i − ωt,i

)
+ B i

IS It,iSt
(
γP
t,i − γt,i

)
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It all goes from here

How to apply this decentralized top-down pricing relation in practice?

−B i
t =

1

2
B i
SSS

2
t vt,i + B i

I It,iµt,i +
1

2
B i
II I

2
t,iωt,i + B i

IS It,iStγt,i

Like machine learning, the pricing relation uses a very simple “basis
function” (the BMS function), but achieves great flexibility via localization.

Too much flexibility: The time decay of a contract can be balanced by 4
sources of expected gains.

Historical centralizing efforts fall on old habits:
Impose common risk-neutral implied vol dynamics across contracts

Carr & Wu (2016): across the whole implied vol surface

Arsland et al (2009), Carr, Wu, Zhang (2022): per maturity

Carr & Wu (2020): nearby contracts
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All men are not born equal

We unite the decentralized pricing not by assuming common dynamics, but by

1 explicitly recognizing their behavior difference

Use historical moment estimators as model inputs (µ̂t,i , v̂t,i , ω̂t,i , γ̂t,i )

anchor the breakeven contribution of each risk source
(B i

I It,i µ̂t,i ,
1
2B

i
SSS

2
t,i v̂t,i ,

1
2B

i
II I

2
t,i ω̂t,i , B i

IS It,iSt,i γ̂t,i )

2 pricing their differences fairly

in accordance (in proportion) to the different risk levels

Supply-demand determines the pricing of a single product — Investors
can add a premium/discount in the pricing on each risk source.

Statistical arbitrage trading across contracts can force the pricing on
each risk type/source to converge in the limit (Ross, 76).

Devils are in the details — how to be fair...
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Different but fair: A linear option pricing model

−B i
t = (βV ,t ω̂t,i + βµ,t µ̂t,i ) [B

i
I It,i ]

+βG ,t v̂t,i
[
1
2B

i
SSS

2
t,i

]
+ βO,t ω̂t,i

[
1
2B

i
II I

2
t,i

]
+ βA,t

√
v̂t,i ω̂t,i

[
B i
ISSt,i It,i

]
Sensitivities × historical moment estimators capture actual/historical
behavior differences across contracts

Common coefficients β impose fair pricing in proportion to risk levels:

1 Volatility risk premium: µt,i = µP
t,i + βV ,t ω̂t,i for all i (proportional to

risk)

2 Statistical trend forecast: µP
t,i = βµ,t µ̂t,i for all i (momentum/reversal)

3 Risk-neutral return variance: vt = βG ,t v̂t,i for all i (vary around
historical estimators)

4 Risk-neutral implied vol change variance: ωt,i = βO,t ω̂t,i for all i (vary
around historical estimators)

5 Risk-neutral covariance: γt,i = βA,t

√
v̂t,i ω̂t,i for all i (proportional to

historical variance)
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Alternative representation in the implied volatility space

The linear model is in the expected excess return space. People tend to be
more familiar with the implied vol surface behavior.

For vanilla options, risk exposures are all proportional to cash gamma.Divide
the relation by cash gamma leads to an implied volatility representation:

I 2t,i = βG ,t v̂t,i
+ 2 (βV ,t ω̂t,i + βµ,t µ̂t,i ) I

2
t,i τ

+ βO,t ω̂t,i (z+z−) + 2βA,t

√
v̂t,i ω̂t,i (z+)

Implied variance = risk-neutral return variance at short-term τ ↓ 0 and
at-the-money z+ = 0, ... plus adjustments

along maturity for volatility risk premium and trend,

along moneyness (z± = lnK/St ± 1
2 I

2
t τ) for implied vol variation

(quadratic in z+z−) and covariation (linear in z+)

The common pricing coefficients βt generate broad, overall adjustments on
the implied volatility level, slopes, and curvature.

The moment estimators (ω̂t,i , µ̂t,i ) are the key drivers on the fine details of
the implied volatility (term structure, skew/smile) shape.
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Linear regression pricing of options

yt,i = Xt,ibt + et,i

The dependent variable is the time decay, yt,i = −B i
t .

The regressors are historical risk estimator-adjusted BMS sensitivities:
Xt,i =[
B i
I It,i ω̂t,i , B i

I It,i µ̂t,i ,
1
2B

i
SSS

2
t,i v̂t,i ,

1
2B

i
II I

2
t,i ω̂t,i , B i

ISSt,i It,i
√
v̂t,i ω̂t,i

]
.

The slope estimates at each date bt = [βV ,t , βµ,t , βG ,t , βO,t , βA,t ]
— the common coefficients across all contracts on that date.

Under the null of no premium, no prediction, and no forecasting bias,
the null breakeven values are b0t =

[
0 0 1 1 ρ̂t

]
.

The time-t common market pricing of risk:

ηt = bt − b0t = [βV ,t , βµ,t , βG ,t − 1, βO,t − 1, βA,t − ρ̂t ]

The regression residual et,i captures the relative mispricing on each contract
in the expected excess return space.
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Empirical analysis on currency options

OTC option implied volatility quotes on dollar prices of yen and pound

1996/1/24 — 2022/10/13, 6,702 business days

5 delta (10, 25, 50, 75, 90) × 5 maturities (1, 3, 6, 9, 12 months)

yen pound

Volatilities tend to spike up, and then calm down slowly.

Yen option implied volatilities are on average higher, and show larger
cross-contract dispersion.

The level and dispersion of pound option implied volatilities picked up in the
second half.
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Construct historical moment estimators

Create daily percentage changes on fixed-contract forward price and implied
volatility (dSt,i , dIt,i ) from floating series

Need interpolation ... more accurate over short-term change

Construct historical moment estimators with horizons of 1,3,12 months.

Cross-contract smoothing/averaging: Implied vol surface should be smooth,
so should their moment estimators.

Moment estimators are embedded in the regressors. Large estimation
errors can cause identification issues.

Under different market conditions, future moments are predicted the best
with historical estimators of different horizons.

Market knows the best: At each date, pick the horizon with the best
pricing performance — mainly to better accommodate market
expectation of the term structure variation.

If you have better forecasts (better methods), we can use them.
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The average implied volatility surface variation (ω̂)

yen pound
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The different lines in each panel are for different delta (moneyness).

At the same maturity, the variance estimates are similar across delta.

The average variance of implied vol change ω̂ declines strongly with
maturity, with a strong curvature.

This ω̂ term structure pattern determines the shape of the implied
volatility term structure via (βV ,t ω̂t,i + βµ,t µ̂t,i ) I

2
t,i τ

It also contributes to the shape of the smile/skew term structure shape

via βO,t ω̂
i
t(z+z−) and βA,t

√
ω̂i
t v̂t,i (z+)
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Pricing performance

Daily cross-sectional OLS regressions on the pricing model, from 1997 to
2022, for 6,450 business days

Median percentage variance contribution from each risk source:
VCk,t = [bt ]k [(X

⊤
t Xt)bt ]k/(y⊤t yt), sum to R2

yen pound
Gamma 81.95 79.40
Vega 21.58 24.79
Trend -7.71 -6.18
Volga 4.28 3.43
Vanna 0.58 -0.15
R2 99.91 99.94

Gamma has the largest variance contribution, followed by vega

The model explains the cross-sectional variation of expected option
excess return extremely well, with median R2 > 99.9%.

Pricing performance is better than most jump-diffusion stochastic vol
models...
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Risk-targeting portfolios

The linear model structure makes it extremely simple to create option
portfolios to either hedge or target a specific risk exposure.

Let Ht denote is the (N × 6) matrix of risk-adjusted exposures and errors,

Ht ≡
[
Xt et

]
BMS greeks tend to be more stable than exposure estimates from a
complicated jump-diffusion stochastic vol model...

Xt adjusts BMS greeks with observed risk magnitudes for each
contract — works well for actual risk management

Minimize portfolio residual return variance, subject to the targeted exposure

min
wt

w⊤
t Σtwt s.t. H⊤

t wt = d,

⇒ wt = Σ−1
t Ht

(
H⊤

t Σ−1
t Ht

)−1
d.

Assume Σt = σ2
t I on the errors, we have wt = Ht

(
H⊤

t Ht

)−1
d.
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Statistical arbitrage trading against regression residuals

Setting d = 16 constructs a portfolio that is neutral to all risk exposures,
but with a unit short exposure to the pricing error.

The portfolio amounts to sell(buy) over(under)-priced options while
maintaining neutral to all risk exposures.

At each date, we apply the portfolio weight to the delta-hedged excess
returns over the next business day from shorting each contract,
rt+1,6 = w⊤

t,6rt+1.

Statistics A. Fixed error B. Fixed notional
yen pound yen pound

Mean 4.48 5.65 0.56 0.44
Std 0.81 0.88 0.11 0.08
IR 5.56 6.43 5.00 5.81

The high IR suggests that the residuals are highly reverting, validating the
statistical arbitrage theory.
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Predict risk portfolio returns with market pricing estimates

Setting d = Ik , for k = 1, · · · , 5 generates risk-targeting portfolios for each
of the risk exposures.

Market pricing estimates ηt reflect whether the market is charging a premium
or discount on the risk dimension relative to the breakeven contribution.

We expect the market pricing estimates to predict the ex post realized
excess returns on the corresponding risk portfolio:

rt+1,k = ak + bkηt,k + et+1,k .

with the null: ak = 0, bk > 0.

yen pound

ak bk R2 ak bk R2

Gamma -1.76 ( -5.67 ) 1.31 ( 6.60 ) 1.00 -1.00 ( -5.97 ) 1.50 ( 13.45 ) 2.47
Vega -1.08 ( -1.63 ) 5.24 ( 25.97 ) 9.32 0.03 ( 0.06 ) 3.37 ( 19.97 ) 4.61
Trend 0.34 ( 0.65 ) 5.39 ( 28.60 ) 11.27 -0.68 ( -1.46 ) 3.20 ( 18.04 ) 4.15
Vanna -0.03 ( -0.59 ) 1.02 ( 10.80 ) 1.78 0.13 ( 3.30 ) 1.45 ( 11.35 ) 1.98
Volga 0.02 ( 0.38 ) 2.56 ( 10.47 ) 1.55 -0.00 ( -0.09 ) 3.49 ( 18.68 ) 3.30

Slopes are strongly positive for all risk portfolios (t-values in parentheses).
Intercepts are mostly insignificant, with a few exceptions.
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Visualize the predictive relations

A. Gamma Vega & trend
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Market pricing estimates on all risk exposures positively predict future excess
returns of the corresponding risk-targeting portfolio, with little bias.

The historical moment estimators create useful breakeven anchors for
identifying the market pricing on each risk source.
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Harvesting the time-varying risk premium

based on the market pricing estimates

The market pricing estimate on each risk source represents the excess return
investors expect to make on the risk-targeting portfolio.

We can decide which direction to take on each portfolio at each date
based on the sign/size of the market pricing estimate.

We can harvest the time-varying risk premium on each risk source by timing
the risk portfolio investment based on the market pricing estimates.

Normalize the risk-target portfolio and the market pricing estimates to
fixed notional amount ($100).

Set the median notional (absolute) weight to $100 corresponding to
the median value of the absolute market pricing estimates.

Set the notional weight at each date proportional to the normalized
market pricing estimate: nk,t = ηk,t/|η|k,t .

Limit the investment to be within ±2 times the median notional
amount.

No forecasting regression involved in this exercise.
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Harvesting risk premiums from risk-targeting portfolios

Risk A. Fixed notional short B. Market timing
Target Mean Std IR Mean Std IR

yen
Vega 0.29 0.24 1.20 0.80 0.39 2.08
Trend -0.14 0.19 -0.74 0.77 0.34 2.26
Gamma -0.34 0.24 -1.42 0.34 0.38 0.91
Volga 0.20 0.20 1.00 0.51 0.31 1.65
Vanna 0.07 0.20 0.35 0.49 0.33 1.48

pound
Vega 0.17 0.16 1.10 0.47 0.24 1.97
Trend 0.01 0.13 0.05 0.44 0.21 2.05
Gamma -0.24 0.16 -1.52 0.28 0.26 1.05
Volga 0.24 0.13 1.91 0.43 0.18 2.34
Vanna -0.05 0.13 -0.39 0.32 0.20 1.62

Market timing turns all risk portfolios to profitability, with good IR.

Stat arb trading on pricing errors and risk-premium harvesting on market
pricing estimates can both be highly profitable.
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Concluding remarks

History repeats itself in cycles of centralization for consolidation and
decentralization for flexibility.

We build a bridge between the two and centralize the decentralized pricing
of option contracts via sequential application of two arbitrage arguments:

No dynamic arbitrage between an option and its underlying
→ a decentralized pricing relation on a single option contract
No statistical arbitrage across option contracts on a given risk type
→ unite the decentralized pricing of all contracts with common market
pricing for each decentralized risk source

The framework captures the strength of both:

Decentralization: Unique features of different contracts, domain
expertise of different investors
Centralization: Not by disregarding dynamics differences, but by
imposing pricing consistency

These efforts lead to a simple linear option pricing relation that can both
price and risk manage the variation of vanilla/exotic option contracts.
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