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Measuring market illiquidity

You observe a lot of (daily) price data p; and want to estimate bid-ask spreads S

On one hand, data is noisy — not great for measurement

» trading not continuous, real-world frictions...
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Measuring market illiquidity

You observe a lot of (daily) price data p; and want to estimate bid-ask spreads S

On one hand, data is noisy — not great for measurement

» trading not continuous, real-world frictions...

On the other, noise in data is exactly what we want to measure!
» Sy =2(p: — P): want to estimate S, don’t observe efficient price P;

» 1 equation, 2 unknowns
Solution:

1. Fix S and augment t: {p; (S, Pt) }+cz, (get more equations)
2. Come up with theory linking P; over ¢, back out S
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From identification challenge to implementation challenge

But assumption of constant S becomes increasingly unrealistic when ¢ grows
» S varies more than 100% in 20% of day-over-day

> settle on “daily” estimates computed using ¢t and t + 1, then average

Basic technology used in all simple bid-ask spread estimators
» daily py, compute statistic over {f,f+1}

» estimate via method of moments
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From identification challenge to implementation challenge

But assumption of constant S becomes increasingly unrealistic when ¢ grows
» S varies more than 100% in 20% of day-over-day

> settle on “daily” estimates computed using ¢t and t + 1, then average

Basic technology used in all simple bid-ask spread estimators
» daily py, compute statistic over {f,f+1}

» estimate via method of moments

Structural tension: theory for P; is asymptotic, data for estimation uses n(t) = 2
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Roll (1984) estimator

Use closing price c; for py:
SRl — 2, | —Cov (Act, Acy1)

SRl is nonlinear, averages are biased due to Jensen’s inequality

1. Because

“Ro B y/a4+4
> E[s%] -5 =5 {8(471(0—1)

— —Roll
2. Empirical implementation uses Cov, not population Cov: S* ?

» Harris (1990): Cov is biased in “small” samples (eg 2-200+ days of data!)
> E [@] — Cov = —c?/n(t)
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Roll (1984) estimator

Use closing price c; for py:
SRl — 2, | —Cov (Act, Acy1)

SRl is nonlinear, averages are biased due to Jensen’s inequality

1. Because

“Ro B y/a4+4
> E[s%] -5 =5 {8(471(0—1)

— —Roll
2. Empirical implementation uses Cov, not population Cov: S* ?

» Harris (1990): Cov is biased in “small” samples (eg 2-200+ days of data!)
> E [@] — Cov = —c?/n(t)

We call 1. moment bias and 2. small sample bias
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This paper

Moment and small sample bias are well-known for Roll

Since then, many estimators for S developed using Roll’s framework (ct)

> no tangible performance improvement (eg French and Roll (1986), Thompson and Waller
(1987), Lesmond et al. (1999), Hasbrouck (2004))

Progress with Corwin and Schultz (2012): high-low estimator (+1,200 citations)

» daily high and low instead of close prices
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This paper

Moment and small sample bias are well-known for Roll

Since then, many estimators for S developed using Roll’s framework (ct)

» no tangible performance improvement (eg French and Roll (1986), Thompson and Waller
(1987), Lesmond et al. (1999), Hasbrouck (2004))
Progress with Corwin and Schultz (2012): high-low estimator (+1,200 citations)

» daily high and low instead of close prices

This paper: The same bias sources also affect the high-low estimator
» + any moment-based estimator using the range (eg Abdi and Ranaldo (2017))

P abstract from why do we even want to estimate effective spreads (eg Hagstromer (2021)
critique)
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Outline

Exact bias expression for the high-low estimator
» bias depends on underlying true spread (mainly) and volatility
» introduce non-classical measurement error
» cross-sectional regressions will be contaminated

» all model violations combined account for only 5% of performance issues

Bias bounds for empirical use
» bound 80% of US stocks (misses very illiquid stocks)

» correlate 98% with actual bias

Lessons for future low-frequency spread estimators
» work on small sample properties

» possibly abandon Roll framework altogether

6/25



Building blocks

True (efficient) log price evolves as GBM
Can’t observe true price, real-world data is noisy

Observed prices p; track true prices P; according to

S
pr=Pr+ EQt

> S: total effective spread
» Qy: order flow indicator (41 for buyer-initiated, —1 for seller-initiated)
» assume: Q; Il P;
Sometimes p; overstates the true price by S/2; sometimes understates it by S/2

» if we can sign Q;, then we can precisely sign p; — P;
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For every two consecutive trading days t and ¢ 41

Tt41

lit1

daily (log) range: r;
(he —1p)

two-day (log) range: 7}
(max{hy, hy1} —min{ly, li11})
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For every two consecutive trading days t and t + 1

I’lH_] ht+l
S/2 5/2
Tt4+1 Rt+1
h
s ISz
liva Ri
daily (log) range: r; R

S/2 S/2

I

I

two-day (log) range: 7}
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Range history

Use of range in finance to estimate volatility dates to Parkinson (1980) and Garman
and Klass (1980)

» The R; part of the range

» “Revived” by Alizadeh et al. (2002) and more recently by Christensen and Podolskij
(2007), Martens and van Dijk (2007)

Based on asymptotic results from Feller (1951)
» neglected literature from hydrology: range is biased in finite data!
» Anis and Lloyd (1953), Sen (1977) derive the expected range for small samples
» for n(t) = 1, bias is approximately —0.798¢
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High-low spread estimator

1. Daily high is buyer-initiated, daily sell is seller-initiated
» stylized fact: holds for 95% of US stock-days
2. Volatility is proportional to trading horizon

3. + usual: spread constant over two consecutive days, GBM

Key relationship: s = hy — Iy = (H¢ +S/2) — (L —S/2) =Rt + S
> with B[R] = 1.59¢

» 7+ r¢y1 has 2 times the spread and volatility over 2 days: Rt + Ry41 + 25
» 1} has 1 spread and volatility over 2 days: R} + S
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Corwin and Schultz (2012) formula

Rewrite the high-low estimator as:

st = (14v2) (e [F+2.] 1)
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Corwin and Schultz (2012) formula

Rewrite the high-low estimator as:

S = (1+2) < E |77 +7,] —ri‘) =5+ (1+v2) (V2E[Rd] - R})

> if we could use E [r? + 2], SHL is unbiased iff 2 [R] = R

» which is the case asymptotically

—-HL
But in practice we can only estimate S* ~ which uses 1 + r;41:
—~HL .
> 5 = ws+ (1+v2) (gRp - R7)

» where ¢ = V1 +«2, k = max{ry, 141}/ min{r, 141}, w = (47 + \[247 -1- \/E), and
R?li” = min{R;, RH»l}
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Empirical estimator

So when is the estimator actually used in practice unbiased?
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Empirical estimator

So when is the estimator actually used in practice unbiased?
» virtually never.

» (only when r; = r:41)

But the result above relies on the asymptotic distribution

» similar to first source of bias in Roll measure
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Empirical estimator

So when is the estimator actually used in practice unbiased?
» virtually never.

» (only when r; = r:41)

But the result above relies on the asymptotic distribution

» similar to first source of bias in Roll measure

. . o>HL . . .
Even if consecutive ranges were equal, S* ~ would still be biased in small samples

E[5") -5 = (1+V2) | (p— v2) + (VIR —R;)

=0 if r;=r111 ?
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210,000 trading days (10,000 monthly averages)
Unbiased if and only if v2E [R;] = E [R]]:

~ 45-degree line

. 5
S S
x X >
e %ﬁ ) 2
: Gk
Ko L=
$0%5, X
kS
Daily Rf Monthly R}

» Even under simulated ideal conditions almost never happens
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Moment bias and small sample bias

E[5") -5 = (1+v2) [ (9 v2) + (VaR!™ - R;)

Moment Bias Small Sample Bias

> these are exactly the same sources of bias as in the Roll estimator

15/25



Moment bias and small sample bias

E[5") -5 = (1+v2) [ (9 v2) + (VaR!™ - R;)

Moment Bias Small Sample Bias

> these are exactly the same sources of bias as in the Roll estimator

) ~ —0.08c

» moment bias only depends on observable data

» small sample bias is approximately

V2E [R{] —E[R}] = ov2/7 (1 -

g[S
</

k=1
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What determines the bias?

—HL
Proposition 3. The bias in S*  is decreasing in S. Given sufficiently high values of
volatility relative to the the latent spread (0/S ~ 4), the bias increases in o.

Consequence of estimation bias previously documented:

> marginally correlates with spread changes in FX and ETFs (Karnaukh et al. (2015),
Marshall et al. (2018))

» no correlation with commodity trading costs (Marshall et al. (2011))
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What determines the bias?

—HL
Proposition 3. The bias in S*  is decreasing in S. Given sufficiently high values of
volatility relative to the the latent spread (0/S ~ 4), the bias increases in o.

Consequence of estimation bias previously documented:

> marginally correlates with spread changes in FX and ETFs (Karnaukh et al. (2015),
Marshall et al. (2018))

» no correlation with commodity trading costs (Marshall et al. (2011))

If you sort US stocks into monthly liquidity deciles using ?HL...
...only 22% of stocks will be in the correct group

» other estimators will do just as poorly (or worse)
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Practical considerations

Previous work suggested via data or simulations that bias worsens with small
spreads and large volatility

Jahan-Parvar and Zikes (2023) conjecture bias is induced by ad-hoc adjustments and
driven by volatility

» but ad-hoc adjustments and model violations account for 5% of misbehavior

» volatility only starts to matter when it becomes too large relative to S

» signal-to-noise ratio < 0.25

Say you want to regress returns on liquidity risk (eg Acharya and Pedersen (2005),
Pontiff and Singla (2019)) or to control for liquidity (McLean and Pontiff (2016))

» Because bias decreases in S, estimator suffers from non-classical measurement error

> attenuation bias may even flip the sign of estimated effect
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Relationship between bias and spread size

10% 45-degree line 12
Lo
& o

£75% £08

2 5 g
3 5% S
v 2

% £ o

i 25% G \
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—04

0% 2.5% 5% 7.5% 10% 0% 2.5% 5% 7.5% 10%
True Spread (S) True Spread (S)

For small spreads (below 1%), the high-low estimator suffers from an upward bias. As the spread becomes
larger, the bias decreases. For reference, the median effective spread in US stocks during 2003-2015 is
0.3%.

Notes: This figure computes 10,000 monthly averages of the high-low spread estimator (with zeros adjustment)
for each 0.1-percentage-point increment in the spread between 0.1% and 10% from simulated data. The data
generating process is described in detail in the text and is designed to maintain all model assumptions, including
constant true spreads in each sample. Bias is defined as the difference between the estimated spread and the true
spread.
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Estimating bias empirically

Because only small sample bias is not observable
s =5 — (14v2) [ (¢ - v2) + (VaRI™ - R )],

estimating the bias empirically comes down to bounding v2R " — R*
> sign small sample bias: method correctly signs 90% of cases

) . ———Min ———max
» use bias expression to back out |Bias, ,Bias,

—HL ., . .
These bounds work best when S* * is most biased (by construction)
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Empirical bias bounds

» bias bounds track actual estimation bias almost perfectly: 98% correlation
» midpoint can be used in cross-sectional regs to soak up measurement error

US Stocks
3%
20/0

1%

NS ms PN

01-2009 01-2010 01-2011 01-2012 01-2013

. = min ——max
- - Bias, — Bias, — Bias,
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Next steps for bid-ask spread estimators

New estimators are introduced and compared to previous ones in horse-races

> if new estimator correlates better with effective spreads in US stocks than eg Roll, it’s a
better mousetrap

This approach is useful but misses structural problem with technology used
> issues not only persist, but are the same despite alternative theory for P;

> eventually studies in other markets cast doubt on new measure being better mousetrap
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Appendix
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Proof 1, Proof

Since E [R#] = v/2E [R;], unbiasedness of 5L immediately follows. For 5" to be unbiased, it
must be that (1 + ﬁ) (pRM" — Rf) = (1 — w) S. Expanding both sides yields

E [¢] E[Ri] — V2E [R] = V2S — E [¢]

which holds if and only if ¢ = /2, which in turn is implied by 7; = ;,1, Vt. Note that ¢ = /2
results in w = 1. This completes the proof.
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Proof 2, Proof
Start with

[(9+v2p—1-v2) s+ (14 v2) (9R™ —R;)] -5

which yields the following after straightforward algebra and by noting that 7y = R; 4 S:
—pMin | QRMIN _ \/2G 4yt 4 /2y — (1 + ﬁ)
Adding and subtracting \/irf"i" from the above and further algebra finally gives
(e v2) [ (0= v2) + (Varr™ - 7). o

We know must show that the expression in (1), which measures the daily estimation error in
the high-low proxy, is equivalent in expectation to the estimator’s bias. First, consider the
implementable high-low spread formula and its expected value:

S = (1+2) (gr™ —77)

and then

E[%] -5 = (1+v2) (B [pr] ~E[R]]) -5 (2+V2)

which gives the estimator’s bias and is identical to the expectation of (1).
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Proof 3, Proof

WLOG, assume that Ry < Ry;1. Therefore, 0¢/9S < 0 and thus

a(3m—-s)

as

= (1+v2) (R'”’” ¢+¢+Sg(§ ﬁ) =

| 2 (Rmx 4 5)? 2 (R 1§ ,
(1 + \/E) Ry (tiw +2+4S (7+)2+ 2 — R — RIMin _ 2
w5 & +3)

B min <0
(R +5) ¢

since R/ = Ry < Ryy1 = RI"™ and S > 0. For the volatility result, recall ¢r/"" = \/E Thus, the
expected value of the bias is:

(1+2) (IE[ ()2 4 (i) ] f]E[mmD <(1+v2) [\ 81n202 +4s\/§o+zsz\/§\/§a\/is}

o
by Jensen’s inequality. The derivative of the above wrt ¢ is positive iff e 4.20 — ¢, where

£ > 0 is the error induced by the concavity of . This completes the proof.
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