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Measuring market illiquidity

You observe a lot of (daily) price data pt and want to estimate bid-ask spreads S

On one hand, data is noisy — not great for measurement
▶ trading not continuous, real-world frictions...

On the other, noise in data is exactly what we want to measure!
▶ St = 2 (pt −Pt): want to estimate S, don’t observe efficient price Pt

▶ 1 equation, 2 unknowns

Solution:

1. Fix S and augment t: {pt (S,Pt)}t∈Z+
(get more equations)

2. Come up with theory linking Pt over t, back out S
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From identification challenge to implementation challenge

But assumption of constant S becomes increasingly unrealistic when t grows
▶ S varies more than 100% in 20% of day-over-day
▶ settle on “daily” estimates computed using t and t + 1, then average

Basic technology used in all simple bid-ask spread estimators
▶ daily pt, compute statistic over {t, t + 1}
▶ estimate via method of moments

Structural tension: theory for Pt is asymptotic, data for estimation uses n(t) = 2
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Roll (1984) estimator

Use closing price ct for pt:

ŜRoll = 2
√
−Cov (∆ct, ∆ct+1)

1. Because ŜRoll is nonlinear, averages are biased due to Jensen’s inequality

▶ E
[
ŜRoll

]
− S = −S

[
µ4/σ4 + 4

8 (n(t)− 1)

]

2. Empirical implementation uses Ĉov, not population Cov: Ŝ∗
Roll

▶ Harris (1990): Ĉov is biased in “small” samples (eg 2-200+ days of data!)
▶ E

[
Ĉov

]
− Cov = −σ2/n(t)

We call 1. moment bias and 2. small sample bias
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This paper

Moment and small sample bias are well-known for Roll

Since then, many estimators for S developed using Roll’s framework (ct)
▶ no tangible performance improvement (eg French and Roll (1986), Thompson and Waller

(1987), Lesmond et al. (1999), Hasbrouck (2004))

Progress with Corwin and Schultz (2012): high-low estimator (+1,200 citations)
▶ daily high and low instead of close prices

This paper: The same bias sources also affect the high-low estimator
▶ + any moment-based estimator using the range (eg Abdi and Ranaldo (2017))
▶ abstract from why do we even want to estimate effective spreads (eg Hagströmer (2021)

critique)
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Outline
Exact bias expression for the high-low estimator
▶ bias depends on underlying true spread (mainly) and volatility
▶ introduce non-classical measurement error
▶ cross-sectional regressions will be contaminated
▶ all model violations combined account for only 5% of performance issues

Bias bounds for empirical use
▶ bound 80% of US stocks (misses very illiquid stocks)
▶ correlate 98% with actual bias

Lessons for future low-frequency spread estimators
▶ work on small sample properties
▶ possibly abandon Roll framework altogether
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Building blocks

True (efficient) log price evolves as GBM

Can’t observe true price, real-world data is noisy

Observed prices pt track true prices Pt according to

pt = Pt +
S
2

Qt

▶ S: total effective spread
▶ Qt: order flow indicator (+1 for buyer-initiated, −1 for seller-initiated)
▶ assume: Qt ⊥⊥ Pt

Sometimes pt overstates the true price by S/2; sometimes understates it by S/2
▶ if we can sign Qt, then we can precisely sign pt −Pt
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For every two consecutive trading days t and t + 1

daily (log) range: rt
(ht − lt)

rt+1

ht

lt

Rt

S/2

S/2

ht+1

lt+1

Rt+1

S/2

S/2

ht+1

lt

R∗
t

S/2

S/2

two-day (log) range: r∗t
(max{ht, ht+1} − min{lt, lt+1})
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Range history

Use of range in finance to estimate volatility dates to Parkinson (1980) and Garman
and Klass (1980)
▶ The Rt part of the range
▶ “Revived” by Alizadeh et al. (2002) and more recently by Christensen and Podolskij

(2007), Martens and van Dijk (2007)

Based on asymptotic results from Feller (1951)
▶ neglected literature from hydrology: range is biased in finite data!
▶ Anis and Lloyd (1953), Şen (1977) derive the expected range for small samples
▶ for n(t) = 1, bias is approximately −0.798σ
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High-low spread estimator

1. Daily high is buyer-initiated, daily sell is seller-initiated
▶ stylized fact: holds for 95% of US stock-days

2. Volatility is proportional to trading horizon

3. + usual: spread constant over two consecutive days, GBM

Key relationship: rt = ht − lt = (Ht + S/2)− (Lt − S/2) = Rt + S
▶ with E [Rt] = 1.596σ

▶ rt + rt+1 has 2 times the spread and volatility over 2 days: Rt +Rt+1 + 2S
▶ r∗t has 1 spread and volatility over 2 days: R∗

t + S
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Corwin and Schultz (2012) formula

Rewrite the high-low estimator as:

ŜHL =
(

1 +
√

2
)(√

E
[
r2

t + r2
t+1

]
− r∗t

)

= S +
(

1 +
√

2
) (√

2E [Rt]−R∗
t

)

▶ if we could use E
[
r2

t + r2
t+1
]
, ŜHL is unbiased iff

√
2E [Rt] = R∗

t

▶ which is the case asymptotically proposition 1 (I)

But in practice we can only estimate Ŝ∗
HL

which uses rt + rt+1:

▶ Ŝ∗
HL

= ωS +
(

1 +
√

2
) (

ϕRmin
t −R∗

t

)
▶ where ϕ ≡

√
1 + κ2, κ ≡ max{rt, rt+1}/ min{rt, rt+1}, ω ≡

(
ϕ +

√
2ϕ − 1 −

√
2
)

, and

Rmin
t = min{Rt,Rt+1}
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, ŜHL is unbiased iff

√
2E [Rt] = R∗

t

▶ which is the case asymptotically proposition 1 (I)

But in practice we can only estimate Ŝ∗
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Empirical estimator

So when is the estimator actually used in practice unbiased?

▶ virtually never.
▶ (only when rt = rt+1) proposition 1 (II)

But the result above relies on the asymptotic distribution
▶ similar to first source of bias in Roll measure

Even if consecutive ranges were equal, Ŝ∗
HL

would still be biased in small samples
proposition 2

E
[
Ŝ∗

HL]− S =
(

1 +
√

2
) rmin

t

(
ϕ −

√
2
)

︸ ︷︷ ︸
=0 if rt=rt+1

+
(√

2Rmin
t −R∗

t

)
︸ ︷︷ ︸

?


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210,000 trading days (10,000 monthly averages)

Unbiased if and only if
√

2E [Rt] = E [R∗
t ]:

▶ Even under simulated ideal conditions almost never happens
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Moment bias and small sample bias

E
[
Ŝ∗

HL]− S =
(

1 +
√

2
) rmin

t

(
ϕ −

√
2
)

︸ ︷︷ ︸
Moment Bias

+
(√

2Rmin
t −R∗

t

)
︸ ︷︷ ︸
Small Sample Bias


▶ these are exactly the same sources of bias as in the Roll estimator

▶ moment bias only depends on observable data
▶ small sample bias is approximately

√
2E [Rt]− E [R∗

t ] = σ
√

2/π

(
1 −

2

∑
k=1

1
√

k

)
≈ −0.08σ
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What determines the bias?

Proposition 3. The bias in Ŝ∗
HL

is decreasing in S. Given sufficiently high values of
volatility relative to the the latent spread (σ/S ≈ 4), the bias increases in σ. proof

Consequence of estimation bias previously documented:
▶ marginally correlates with spread changes in FX and ETFs (Karnaukh et al. (2015),

Marshall et al. (2018))
▶ no correlation with commodity trading costs (Marshall et al. (2011))

If you sort US stocks into monthly liquidity deciles using Ŝ∗
HL

...

...only 22% of stocks will be in the correct group
▶ other estimators will do just as poorly (or worse)

16 / 25



What determines the bias?

Proposition 3. The bias in Ŝ∗
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Practical considerations

Previous work suggested via data or simulations that bias worsens with small
spreads and large volatility

Jahan-Parvar and Zikes (2023) conjecture bias is induced by ad-hoc adjustments and
driven by volatility
▶ but ad-hoc adjustments and model violations account for 5% of misbehavior
▶ volatility only starts to matter when it becomes too large relative to S
▶ signal-to-noise ratio < 0.25

Say you want to regress returns on liquidity risk (eg Acharya and Pedersen (2005),
Pontiff and Singla (2019)) or to control for liquidity (McLean and Pontiff (2016))

▶ Because bias decreases in S, estimator suffers from non-classical measurement error
▶ attenuation bias may even flip the sign of estimated effect
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Relationship between bias and spread size
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Estimating bias empirically

Because only small sample bias is not observable

S = Ŝ∗
HL −

(
1 +

√
2
) [

rmin
t

(
ϕ −

√
2
)
+
(√

2Rmin
t −R∗

t

)]
,

estimating the bias empirically comes down to bounding
√

2Rmin
t −R∗

t

▶ sign small sample bias: method correctly signs 90% of cases

▶ use bias expression to back out
[

B̂iasn
min

, B̂iasn
max
]

These bounds work best when Ŝ∗
HL

is most biased (by construction)
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Empirical bias bounds

▶ bias bounds track actual estimation bias almost perfectly: 98% correlation
▶ midpoint can be used in cross-sectional regs to soak up measurement error

1%

2%

3%

01-2009 01-2010 01-2011 01-2012 01-2013

Biasn B̂ias
min
n B̂ias

max
n

US Stocks
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Next steps for bid-ask spread estimators

New estimators are introduced and compared to previous ones in horse-races
▶ if new estimator correlates better with effective spreads in US stocks than eg Roll, it’s a

better mousetrap

This approach is useful but misses structural problem with technology used
▶ issues not only persist, but are the same despite alternative theory for Pt

▶ eventually studies in other markets cast doubt on new measure being better mousetrap
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Appendix
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Proof 1, Proof Back

Since E [R∗
t ] =

√
2E [Rt], unbiasedness of S̃HL immediately follows. For ŜHL to be unbiased, it

must be that
(

1 +
√

2
) (

ϕRmin
t − R∗

t
)
= (1 − ω) S. Expanding both sides yields

E [ϕ]E [Rt]−
√

2E [Rt] =
√

2S − E [ϕ] S

which holds if and only if ϕ =
√

2, which in turn is implied by rt = rt+1, ∀t. Note that ϕ =
√

2
results in ω = 1. This completes the proof.
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Proof 2, Proof Back

Start with [(
ϕ +

√
2ϕ − 1 −

√
2
)

S +
(

1 +
√

2
) (

ϕRmin
t − R∗

t

)]
− S

which yields the following after straightforward algebra and by noting that rt = Rt + S:

−2rmin
t + 2Rmin

t −
√

2S + ϕrmin
t +

√
2ϕrmin

t − R∗
t

(
1 +

√
2
)

Adding and subtracting
√

2rmin
t from the above and further algebra finally gives(

1 +
√

2
) [

rmin
t

(
ϕ −

√
2
)
+
(√

2Rmin
t − R∗

t

)]
. (1)

We know must show that the expression in (1), which measures the daily estimation error in
the high-low proxy, is equivalent in expectation to the estimator’s bias. First, consider the
implementable high-low spread formula and its expected value:

ŜHL =
(

1 +
√

2
) (

ϕrmin
t − r∗t

)
and then

E
[
ŜHL

]
− S =

(
1 +

√
2
) (

E
[
ϕrmin

t

]
− E [R∗

t ]
)
− S

(
2 +

√
2
)

which gives the estimator’s bias and is identical to the expectation of (1).
24 / 25



Proof 3, Proof Back

WLOG, assume that Rt < Rt+1. Therefore, ∂ϕ/∂S < 0 and thus

∂
(

ŜHL − S
)

∂S
=
(

1 +
√

2
)(

Rmin
t

∂ϕ

∂S
+ ϕ + S

∂ϕ

∂S
−
√

2
)
=

−

(
1 +

√
2
)Rmin

t

√√√√ 2 (Rmax
t + S)2(

Rmin
t + S

)2 + 2 + S

√√√√ 2 (Rmax
t + S)2(

Rmin
t + S

)2 + 2 − Rmax
t − Rmin

t − 2S


(
Rmin

t + S
)

ϕ
< 0

since Rmin
t = Rt < Rt+1 = Rmax

t and S > 0. For the volatility result, recall ϕrmin
t ≡

√
β̂. Thus, the

expected value of the bias is:

(
1 +

√
2
)(

E

[√(
rmax
t
)2

+
(

rmin
t

)2
]
−
√

2E
[
rmin
t

])
≤
(

1 +
√

2
) 
√√√√

8 ln 2σ2 + 4S

√
8
π

σ + 2S2 −
√

2

√
8
π

σ −
√

2S



by Jensen’s inequality. The derivative of the above wrt σ is positive iff
σ

S
> 4.20 − ε, where

ε ≥ 0 is the error induced by the concavity of β. This completes the proof.
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