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This presentation is confidential and intended solely for attendees of The IAQF/Thalesians, and such
persons’ professional advisors. This presentation may not be reproduced or distributed. This
presentation is for informational purposes only and does not constitute an offer to sell, or a solicitation
of an offer to buy, any security or instrument in or to participate in any trading strategy with the
presenter or in any fund or account advised by the presenter (each, a “fund”). If such offer is made, it
will only be made by means of a confidential offering memorandum, which would contain material
information (including certain risks of investment and conflicts of interest) not discussed in this
presentation and which would supersede and which would qualify in its entirety the information
discussed in this presentation. Any decision to invest in a fund should be made after reviewing the
relevant confidential offering memorandum, conducting such investigations as the investor deems
necessary and consulting the investor’s own legal, accounting and tax advisors in order to make an
independent determination of the suitability and consequences of an investment. No representation or
warranty, express or implied, as to the accuracy or completeness of the information discussed in this
presentation is made. It is believed to be reasonably accurate and current for the purposes of the
illustrations provided but has not been independently verified. There can be no assurance that a fund’s
objectives will be achieved or that a fund will avoid substantial or complete losses. An investment in a
fund is speculative and involves substantial risk of loss. An investment should only be considered by
persons who can afford a loss of their entire investment. Past performance is not necessarily indicative
of future results. Any statements herein regarding the viability or likelihood of success of trading
techniques or approaches, future events or other similar statements constitute only subjective views, are
based upon expectations or beliefs, should not be relied on, are subject to change due to a variety of
factors and involve inherent risks and uncertainties, both general and specific, many of which cannot be
predicted or quantified. Actual results could differ materially from those discussed, contemplated by or
underlying the statements made during this presentation. In light of these risk and uncertainties, there
can be no assurance that these statements are or will prove to be accurate or complete in any way.
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Introduction
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The steady-state turnover of a trading strategy is of clear
interest to practitioners and portfolio managers, as is the
steady-state Sharpe ratio.
In this article, we show that in a convenient Gaussian process
model, the steady-state turnover can be computed explicitly,
and obeys a clear relation to the liquidity of the asset and to
the autocorrelation of the alpha forecast signals.
The steady-state optimal turnover is given by

γ
√
n + 1

where γ is a liquidity-adjusted notion of risk-aversion, and n is
the ratio of mean-reversion speed to γ.
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The work that we shall discuss was published in the June 2022
issue of Risk magazine.
https://www.risk.net/risk-magazine/jun-2022

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4018447

An earlier preprint may be found on SSRN.
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One of the central problems faced by institutional investment
managers is the proper management of trading costs.
For very active strategies, the most significant source of
trading costs is usually market impact; see among others
Almgren et al. (2005) and Bouchaud (2009).
The manager may reduce overall market impact cost by
reducing turnover, but this potentially also reduces the
manager’s ability to monetize time-sensitive trading
opportunities.
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The proper level of turnover of a real strategy can depend on
many factors.
Nevertheless, in a class of Gaussian process models with linear
price impact1, we derive a simple explicit relation (2.15)
between the optimal turnover, the autocorrelation of the
trading signal, the investor’s risk-aversion, and the liquidity
and volatility of the underlying asset.

1This class of models has been the subject of an intensive literature, see
among others Almgren and Chriss (2001) and Gârleanu and Pedersen (2016)
and the reference books Cartea, Jaimungal, and Ricci (2014) and Guéant
(2016)
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Our explicit results, while mathematically elegant, only apply
to the case of linear price impact, leading to quadratic total
cost.
Empirical studies support the conclusion that the price impact
of large orders is in fact proportional to the square root of the
order’s participation; see Tóth et al. (2011) and references
therein.
Nevertheless, we join Gârleanu and Pedersen (2013) in the
belief that it is worthwhile to develop explicit formulas which
apply to the linear case, because they can be used as heuristics,
approximations to more complex models, or to develop bounds.
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Historically, one of the first explicit formulas relating approximate
investment performance to forecast accuracy was the Grinold
(1989) fundamental law of active management, which asserts that

IR ≈ IC
√
N

where
1. IR is the information ratio,
2. IC is the information coefficient defined as the correlation of a

single signal to the dependent return, and
3. N is the effective number of independent bets.
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Bets may be independent either because they pertain to
statistically independent investments, or because they pertain
to different periods of time, or both.
Unfortunately the Grinold (1989) formula cannot relate the
turnover of the strategy to any other meaningful quantity.
The formula always prefers increasing turnover, because if
asset returns are serially independent, then trading more often
increases N with no perceived cost.
Liquidity of the asset is not an input to the formula.
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In order to better understand the fundamental relation
between optimal turnover, liquidity, and autocorrelation of
alpha signals, we work in a continuous-time stochastic process
model.
Letting xt denote an investor’s holdings of a risky asset at time
t, denominated in dollars (or any convenient numeraire),
define the steady-state turnover as the following limit

lim
t→∞

E|ẋt |
E|xt |

(2.1)

where ẋt denotes the time-derivative.
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The steady-state turnover of the optimal strategy is of clear
interest to practitioners and portfolio managers, as is the
steady-state Sharpe ratio.
In what follows, we show that in a convenient Gaussian
process model, the steady-state turnover can be computed
explicitly, and obeys a clear relation to the liquidity of the
asset and to the autocorrelation of the alpha forecast signals.
Thus, we contribute to the literature on optimal execution, in
the spirit of Cartea and Jaimungal (2016) and Lehalle and
Neuman (2019), by providing closed-form expressions of
important trading metrics in a general linear-quadratic
framework.
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Let λ denote the linear price impact coefficient in the tradition
of Kyle (1985), let κ denote the investor’s absolute
risk-aversion, and let σ denote the instantaneous volatility.
In the special case of an Ornstein-Uhlenbeck model with
mean-reversion speed ϕ, we find that steady-state optimal
turnover is given by √√√√σ

(
ϕ
√
κλ+ κσ

)
λ

.

Before deriving these explicit formulas, we present Theorem
2.1, which is arguably the most general result on optimal
trading strategies for quadratic trading-cost models in the
setting of a mean-quadratic-variation objective.
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A very general result on quadratic costs
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Presently we generalize the well-known result of Gârleanu and
Pedersen (2016), which assumed the return-predictor process is
a Markovian jump diffusion, to any square-integrable process.
Our theorem also generalizes the main result of Almgren and
Chriss (2001), and thus has applications to optimal execution
of algorithmic orders.
Such a general result is of intrinsic interest in its own right,
but we need it specifically later in this paper, to derive results
on steady-state optimal turnover and strategy performance.
The proof is also of interest, as it shows that the problem can
be converted into a convex optimization problem in an
infinite-dimensional space, and is thus amenable to standard
convex optimization techniques as per Baldacci and Benveniste
(2020).
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Fix a probability measure space (Ξ,P) where P is a probability
measure on a σ-algebra of events.
The outcomes in this space are various possible trajectories of
the market and of our trading within it.
The filtration

F = {Ft : t ≥ 0}

denotes, as usual, the information that is available at time t.
An adapted process is a stochastic process x such that each xt
is Ft-measurable.
Since it is used often, we define a notation for the conditional
expectation:

Et [Y ] := E[Y | Ft ],

where Y is any random variable.
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Let H denote the usual real Hilbert space of all adapted
RN -valued processes on [0,∞) which are integrable in the
mean-square sense:

E
∫ ∞

0
||µt ||2dt < ∞.

Also let A be the Sobolev space of RN -valued adapted
processes that are almost surely differentiable and whose
derivative lies in H.
We use the symbol · for the Euclidean inner product in RN ,
and ⟨ , ⟩ for the standard inner product on H:

⟨x , y⟩ = E
∫ ∞

0
xt · yt dt .
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In the following, the positive-definite matrix Ω denotes the
quadratic co-variation of the asset return process; with this
interpretation, the risk term in our objective function is
integrated instantaneous variance.
This corresponds with the treatment of integrated variance in
Almgren and Chriss (2001), and also corresponds directly to
the objective function of Gârleanu and Pedersen (2016) in the
zero-discounting case.
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Let µ ∈ H. let Ω be a positive-definite N × N covariance
matrix.
Let Λ be a positive-definite N × N market-impact coefficient
matrix.
Let κ > 0 be a risk-aversion coefficient.
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Theorem 2.1

For any x0 ∈ RN , there is a unique solution to the optimization
problem

max
x∈A; x(0)=x0

E
∫ ∞

0

[
µt · xt −

1
2
ẋ · Λẋ − κ

2
xt · Ωxt

]
dt, (2.2)

given by the solution, with boundary condition x(0) = x0, to the
stochastically-forced ODE system

ẋt = −Γxt + bt (2.3)

where

Γ = (κΛ−1Ω)1/2 and (2.4)

bt =

∫ ∞

t
eΓ(t−s)Λ−1Etµs ds. (2.5)

20 / 60



The objective in (2.2) may be unbounded if

E
∫ ∞

0
||µs ||2 ds = ∞

as will be the case in many examples of interest, including
stationary processes.
Nevertheless, under mild growth conditions on µ which are
satisfied by most realistic forecasts, an investor with an infinite
horizon and no discounting will arrive at a well-defined
investment strategy by using (2.3), or equivalently by
considering finite-horizon problems and letting the horizon
tend to infinity.
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Note bt plays a role analogous to the classical concept of a
forcing function (a function which depends on time, but not
on x).
The forcing function is stochastic because bt depends on

Etµs ,

which is a conditional expectation in the filtration, hence a
stochastic process.
One may wonder whether Λ−1Ω actually possesses a real
matrix square root, which is required for Γ to be real.
Fortunately

Γ := (κΛ−1Ω)1/2

= κΛ−1/2(Λ−1/2ΩΛ−1/2)1/2
Λ1/2.

so that the only matrix that we take the square root of, is
symmetric and positive semi-definite.
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Relation to Garleanu and Pedersen
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Theorem 2.1 represents a strict generalization of Gârleanu and
Pedersen (2016) Proposition 1, to predictor processes which
are not necessarily Markov, and to the case of zero discounting.
For Markov predictors with zero discounting, our solution
agrees with Gârleanu and Pedersen (2016) exactly.
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The Gârleanu and Pedersen (2016) solution is given in terms
of matrices known as M̄ rate and b which have relatively
complicated expressions, due to discounting.
In Gârleanu and Pedersen (2016) equations (9)-(10), they
express

M̄ rate = Λ−1Axx , where

Axx = −ρ

2
Λ + Λ1/2

(
κΛ−1/2ΩΛ−1/2 +

ρ2

4
I

)1/2

Λ1/2

b := κA−1
xx Ω

where ρ is the discount factor that GP inserted under the
integral in (2.2).
This expression becomes much simpler in the limit ρ → 0.
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In our framework, which explicitly works in the limit ρ → 0,
M̄ rate and b simplify to

M̄ rate = b = Γ.

These expressions are quite a bit simpler than G-P’s version,
because of the zero discounting.
It turns out that the discount factor, which most portfolio
managers probably view as arbitrary, is responsible for a large
complication in the resulting expressions.
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We then have from (2.5),

M̄aim = Γ−1Λ−1
∫ ∞

t
eΓ(t−s)Etµs ds

= Γ

∫ ∞

t
eΓ(t−s)Et

[
(κΩ)−1µs

]
ds

The latter expression agrees with equation (12) of Gârleanu
and Pedersen (2016), who denote the inner matrix by
Markowitzt .
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Theorem 2.1 enables researchers to derive explicit optimal
trading strategies for a wide range of models by relating them
to equivalent ODE systems.
Moreover, the maximization in (2.2) is not simply over static,
predetermined trading plans, but over the substantially larger
class of all admissible stochastic processes.
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This contributes to the literature on optimal execution in a
linear-quadratic framework in the spirit of Lehalle and Neuman
(2019).
In our case, Theorem 2.1 facilitates the derivation of simple
explicit formulas for the steady-state turnover and information
ratio of the optimal strategy, as we shall present in the coming
sections.
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Steady-state calculations for Gaussian processes

30 / 60



We will be interested in detailed calculations for single-asset
trading paths.
On account of (2.3), we are interested in a Gaussian process x
defined by the stochastically-forced linear ODE:

ẋt = −γxt + at ,

for some constant γ > 0, where at is a process satisfying

Etas = e−θ(t−s)at for all s > t, (2.6)

for some θ > 0.
It follows from (2.6) that

lim
s→∞

Et [as ] = 0,

so the steady-state mean of the process a vanishes, and hence
the same must hold for x and ẋ .
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For simplicity let us assume that the unconditional mean of at
is zero for all t.
Under these assumptions, the Gaussian process xt has certain
steady-state properties which can be derived in closed form.
Since xt is prototypical solution of an optimal trading problem
that we discuss later on, the steady-state properties of xt are
clearly of crucial importance to understanding the optimal
steady-state turnover.
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For notational convenience, let us define the following three
functions:

h(t) = Eatxt , g(t) = Ex2
t , and v(t) = Eẋ2

t . (2.7)

The steady-state values of these functions, denoted by h̄, ḡ , v̄ ,
can be derived by standard calculations for Gaussian processes.

h̄ =
c0

θ + γ
.

ḡ =
h̄

γ
.

v̄ = h̄θ

where c0 is the steady-state variance of at .
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Since differentiation is a linear operator, the derivative of a
Gaussian process is another Gaussian process (see Williams
and Rasmussen (2006) section 9.4 and references therein).
Since {xt} is a Gaussian process, each xt is a Gaussian random
variable, as is each ẋt .
In our example both xt and ẋt have mean zero.
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From classical properties of the mean-zero normal distribution,
one then has

E[|xt |]2 = (π/2)E[x2
t ],

and the same holds for ẋt with the same constant, π/2.
Hence the steady-state turnover, as defined by (2.1), exists
and is given by

lim
t→∞

E|ẋt |
E|xt |

=

√
v̄√
ḡ
=

√
θγ. (2.8)
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Single-asset trading strategies
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Suppose an investor with risk-aversion κ > 0 is trading a single
financial asset and solves

sup
x

E
[∫ ∞

0
µtxt −

1
2
κσ2x2

t − 1
2
λẋ2

t dt

]
(2.9)

where x , µ are assumed to satisfy the technical hypotheses in
Theorem 2.1, and the supremum is over all such x .
The use of λ to denote a linear price impact coefficient is
inspired by, and consistent with, the notation of Kyle (1985);
indeed such a coefficient is often referred to as Kyle’s lambda.
We are interested in the steady-state properties of solutions to
(2.9), for which the key result is the following corollary of
Theorem 2.1.
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Corollary 2.2

The optimal trading strategy solving (2.9) is the solution of the
ODE with stochastic coefficients:

ẋt = −γxt +mt , (2.10)

where:

γ =

√
κσ2

λ
; (2.11)

mt =

∫ ∞

t
λ−1e−γ(s−t)Etµs ds. (2.12)
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Corollary 2.2 is a straightforward consequence of applying
Theorem 2.1 to the single-asset case, where N = 1 and the
N × N matrices Λ,Ω are just scalars λ, σ2.
In particular (2.11) may be seen as the reduction of (2.4).
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Assume now that the alpha-forecast process µt is an
Ornstein-Uhlenbeck (O-U) process:

dµt = −ϕµtdt + ν dW . (2.13)

In this context ϕ is called the speed of mean-reversion, and

ln(2)/ϕ

is the half-life.
Then mt in (2.12) satisfies the exponential-decay condition
(2.6), with θ = γ + ϕ:

Etms = e−(γ+ϕ)(s−t)mt . (2.14)
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Hence the calculations leading to (2.8) apply.
In particular, the optimal steady-state turnover exists and is
given by (2.8) which becomes:

optimal turnover = γ
√
ϕ/γ + 1. (2.15)

Plugging in (2.11) it is easily verified that (2.15) is equal to√
σ(ϕ

√
κλ+ κσ)/λ,

and that γ is the scalar version of the Garleanu-Pedersen rate
matrix.

41 / 60



Eq. (2.15), while only strictly valid in the case of quadratic
costs, can be used by practitioners as an easily-remembered
rule of thumb.
One can see, e.g. from (2.14), that γ and ϕ each have
dimensions of inverse time, and so optimal turnover is also in
the same units as γ, inverse time.
As such it represents the fraction of steady-state book size
which is traded in the given time unit.
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Practical example
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For example, if
κ = 10−6,

then for an asset with σ = 0.01/day,

λ = 10 bps per 1% of ADV,

and average daily volume (ADV) is $ 10 million, then one has

γ = 0.1/day.

If ϕ = 0.2/day, corresponding to a half-life about 3.5 days,
then ϕ/γ = 2 and optimal turnover (2.15) is about

γ
√

3 ≈ 17.3%/day.
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Steady-state information ratio
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From (2.12) and the fact that

Etµs = e−ϕ(s−t)µt ,

we get the relation

mt = λ−1(γ + ϕ)−1µt . (2.16)

Thus, using (2.7) with mt in place of at , and also using (2.16)
to solve for µt , we find that the expected ex ante rate of
profitability is

E[xtµt ] = λ(γ + ϕ)E[xtmt ] = λ(γ + ϕ)h(t) (2.17)
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We define the steady-state information ratio (IR) as

IR = lim
t→∞

E[xtµt − (λ/2)ẋ2
t ]√

E[σ2x2
t ]

The same calculations that were used in deriving (2.8) now
allow us to find, in the special case of the O-U process given in
(2.13) for dµt , that

IR =
ν

2σ

√
γ

2ϕ(ϕ+ 2γ)
(2.18)

In the numerical example from above, with ϕ/γ = 2 one has

IR = ν/(8γσ) ≈ 0.5ν/σ.
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Statistically independent assets
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The extension to a portfolio of N statistically independent
assets, all governed by mean-reverting dynamics with similar
half-lives and liquidity parameters, may be approximated by
multiplying (2.18) by

√
N as per Grinold (1989).

In general the assets in a portfolio will not be statistically
independent, but there are special cases which may be
approximated using the independence assumption.
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For example, in a market where the covariance matrix is
well-described by a multi-factor model (Ross, 1976), then a
strictly factor-neutral strategy may be modeled as trading
synthetic “residual assets,” which are defined as baskets that
realize the factor model’s residual returns.
For example, if one starts with a position in stock i , and then
adds an appropriate combination of pure factor portfolios to
completely hedge stock i ’s exposures to all common factors,
one has a representation of the i-th residual asset as this
hedged basket.
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Residual assets will be statistically independent if the factor
model’s covariance matrix represents the true covariance of the
data-generating process.
For strategies modeled as dynamic portfolios of residual assets,
the approximation of multiplying (2.18) by

√
N is reasonable.

Thus one obtains the closed-form generalization of the classic
“fundamental law of active management” to a modern context,
in which the trader is aware of market impact and acts in a
dynamically optimal way with respect to a
mean-quadratic-variation objective.
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Extensions and future work
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In optimal turnover calculations, liquidity (and hence, price
impact) plays a central role; hence, it is natural that in
multi-asset extensions, we treat the case of cross-asset impact.
In this context, a trading model of the form described above is
said to optimize with cross-impact if the instantaneous utility
function features a term of the form

1
2
ẋ · Λẋ ,

where Λ is not a strictly diagonal matrix.
If Λ is diagonal we say there is no cross-impact in the model.
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If Λ is not positive semi-definite, then one can identify a trade
list with negative cost.
More generally, various assumptions for the matrix Λ are
possible, corresponding to the various no-arbitrage
assumptions one might wish to make.
For example Schneider and Lillo (2019) found that for bounded
decay kernels and no dynamic arbitrage, Λ must be symmetric.
Tomas, Mastromatteo, and Benzaquen (2022) present a
cogent summary of the various no-arbitrage assumptions, and
empirical evidence thereof.
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For strategies trading a single asset in a Gaussian process
background, we derived a simple explicit formula relating the
three fundamental variables of trading with alpha signals:
autocorrelation, liquidity, and optimal turnover.
Specifically, optimal turnover is given by

γ
√
n + 1

where γ is a liquidity-adjusted risk-aversion parameter, and n
is the ratio of mean-reversion speed to γ.
This single-asset result is interesting and provides an
easily-remembered “rule of thumb,” but it is not fully
satisfying, since most real trading strategies involve multiple
assets which cannot be viewed as statistically independent.
The existence of a simple, explicit formula governing the
single-asset case leaves a gap, where a multi-asset
generalization is needed.
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In a future article, which is nearing readiness to submit, we
plan to fill that gap by deriving an explicit formula for the
steady-state optimal turnover in the portfolio case.
We assume that the alpha signals have the same
mean-reversion rate, denoted ϕ, for each asset being traded.
Even then, to derive steady-state optimal trading rates for
each asset in closed form is non-trivial because the trading rate
in asset i is a function of the trading rates in all the other
assets due to covariance and cross-impact.
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The key insight that enables further progress is that the
stochastic differential equations governing the system partially
decouple in a basis of eigenvectors for the matrix

Γ = (κΛ−1Ω)1/2.

This is a nice basis for almost any calculation one might want
to do concerning the behavior at optimality of solutions of the
stochastic variational problem, because by Theorem 2.1, those
solutions solve the stochastic ODE system

ẋt = −Γxt + bt ,

and we are using a basis in which this system decouples.
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The same technique is sometimes used in other types of
analysis of systems of coupled ODEs, where it goes under
various names such as “the decoupling technique”.
Nevertheless, its application to optimal portfolio turnover in
the context of Theorem 2.1 appears to be novel.
Perhaps one can think of the eigenvectors of Γ as
“liquidity-adjusted principal components” since if Λ were
proportional to the identity matrix, they would simply be the
principal component directions of covariance Ω.
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