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Background

I Asset management problems as problems of high-dimensional
stochastic optimal control (SOC)

I We apply entropy regularized Reinforcement Learning
(G-learning) to these SOC (noisy) problems

I Inverse Reinforcement Learning (IRL) is applied to back up
the reward function of fund managers

I The combined RL/IRL scheme tries to learn from human
experts, and improve over their strategies (policies)
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What is Reinforcement Learning (RL)?

I We present a particular version of RL called G-learning, with
applications to wealth management and asset allocation

I We also present two algorithms for for Inverse Reinforcement
Learning (IRL) which recovers agents’ rewards from the
observed behavior
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Portfolio model

Consider a simple portfolio model

I A universe of N assets (e.g. stocks) with the vector pt of
market prices at time t.

I In addition, can keep wealth in a risk-free bank cash account
with risk-free interest rate rf

I Vector xt ∈ RN describes dollar amounts of positions in
individual assets. xit < 0 means a short position

I Trading has costs (fees and market impact)

I Trades ut ∈ RN are made at the beginning of intervals t
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The reward function for portfolio optmization

I For a next period pre-specified target portfolio value, P̂t+1,
the expected one-step reward for time step t:

R̂t(xt ,ut , ct) = −Et

[(
P̂t+1 − (1 + rt)(xt + ut)

)2
]

− λ
(
1Tut − ct

)2 − uT
t Ωut . (1)

I The three terms are: a penalty for underperformance against
a benchmark portfolio, a soft constraints on a sum of all
trades (where ct is the flow into the portfolio), and a
transaction cost term

I Trades ut are considered the action variables in a dynamic
portfolio optimization problem

I Note the quadratic structure of the resulting reward function!
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Target portfolio

I One simple choice of the target portfolio P̂t+1 is a linear
combination of a portfolio-independent benchmark Bt and the
current portfolio growing with a fixed rate η:

P̂t+1 = ρBt + η 1Txt , (2)

I ρ and η are parameters defining the relative weights of
portfolio-independent and portfolio-dependent terms.

I For a sufficiently large values of Bt and η, such a target
portfolio would be well above the current portfolio at all
times, and thus would serve as a reasonable proxy to an
asymmetric measure.

I For a benchmark Bt , we can use funds’ benchmark indexes
(rescaled to match the initial portfolio value)
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Quadratic reward

I Asset returns as rt = r̄t + ε̃t where r̄0(t) = rf is the risk-free
rate (as the first asset is risk-free), and ε̃t = (0, εt) where εt
is an idiosyncratic noise with covariance Σr of size
(N − 1)× (N − 1).

I The one-step reward in Eq.(1) is computed more explicitly as
follows:

Rt (xt , ut ) = −P̂2
t+1 + 2P̂t+1(xt + ut)T(1 + r̄t)− (xt + ut)T Σ̂t (xt + ut)− λ

(
1

Tut − ct

)2
− ωuT

t ut

= xTt R
(xx)
t xt + uTt R

(ux)
t xt + uTt R

(uu)
t ut + xTt R

(x)
t + uTt R

(u)
t + R

(0)
t

where

Σ̂t =

[
0 0
0 Σr

]
+ (1 + r̄t )(1 + r̄t )T

I The vector of free parameters defining the reward function is
thus θ := (λ, η, ρ, ω).

I The quadratic reward specification gives rise to semi-analytic
optimal policies.
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Stochastic policies

I For any parametrized deterministic policy πθ(·|xt), parameters
θ are found from data, and hence are random themselves.

I Example: Markowitz portfolio model: allocations depend on
expected returns that are estimated from data, thus random.

I A measure of uncertainly in recommended allocations is highly
desirable in view of an uncertain world.

I Any sub-optimal behavior have probability zero under a
deterministic policies.

I Conclusion: we need to work with stochastic policies.
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Stochastic policies

I A stochastic policy is any valid probability distribution for
actions at :

πθ = πθ(at |xt)

(Will also depend on expected returns r̄t).

I If we have a stochastic policy, we have a generative model of
action and dynamics - can be used for both past and future
simulated data.
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RL with stochastic policies

maximize Eqπ

[
T−1∑
t′=t

γt
′−t R̂t′(xt′ , at′)

]
w.r.t. qπ(x̄ , ā|x0) = π(a0)

∏T−1
t=1 π(at |xt)p (xt+1|xt , at)

subject to
∫
dat π (at |xt) = 1

Here Eqπ [·] stands for expectations with respect to path
probabilities defined according to the third line - driven by
stochastic policies.
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Reference policy

We assume that we are given a probabilistic reference (or ”prior”
policy π0(at |xt).
It can be based on a parametric model, past historic data, etc.
We will use a simple Gaussian reference policy

π0(at |xt) =
e−

1
2

(at−â(xt))T Σ−1
a (at−â(xt))√

(2π)N |Σa|
(3)

where
â(xt) = Â0 + Â1xt (4)
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Bellman Optimality Equation

Let

V ?
t (xt) = max

π(·|x)
Et

[
T−1∑
t′=t

γt
′−t R̂t′(xt′ , at′)

]
(5)

The optimal state value function V ?
t (xt) satisfies the Bellman

optimality equation

V ?
t (xt) = max

at
R̂t(xt , at) + γEt,at

[
V ?
t+1(xt+1)

]
(6)

The optimal policy π? can be obtained from V ? as follows:

π?t (at |xt) = arg max
at

R̂t(xt , at) + γEt,at

[
V ?
t+1(xt+1)

]
(7)

When Vt(xt) is found, solving for π takes another optimization
problem in Eq.(7) (a policy improvement step).
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Bellman Optimality Equation: a reformulation

Reformulate the Bellman optimality equation:

V ?
t (xt) = max

π(·|x)∈P

∑
at∈At

π(at |xt)
(
R̂t(xt , at) + γEt,at

[
V ?
t+1(xt+1)

])
(8)

Here P =
{
π : π ≥ 0, 1Tπ = 1

}
is a set of all valid distributions.

Eq.(8) is equivalent to the original Bellman equation (5), because
for any x ∈ Rn, we have maxi∈{1,...,n} xi = maxπ≥0,||π||≤1 π

T x .
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Information cost of a policy
The one-step information cost of a learned policy π(at |xt) relative
to a reference policy π0(at |xt) is (Tishby et. al., 2015)

gπ(x, a) = log
π(at |xt)
π0(at |xt)

(9)

Its expectation with respect to π is the KL divergence of π(·|xt)
and π0(·|xt):

Eπ [gπ(x, a)| xt ] = KL[π||π0](xt) (10)

≡
∑

at

π(at |xt) log
π(at |xt)
π0(at |xt)

The total discounted information cost for a trajectory is

Iπ(x) =
T∑

t′=t

γt
′−tE [gπ(xt′ , at′)| xt = x] (11)
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Free energy

The free energy function F πt (xt) is entropy-regularized value
function (with the information cost penalty):

F πt (xt) = V π
t (xt)−

1

β
Iπ(xt) (12)

=
T∑

t′=t

γt
′−tE

[
R̂t′(xt′ , at′)−

1

β
gπ(xt′ , at′)

]
β is the regularization parameter that controls a trade-off between
reward optimization and proximity to the reference policy.
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Bellman equation for free energy

A Bellman equation for the free energy function F πt (xt) is obtained
from (12):

F πt (xt) = Ea|x

[
R̂t(xt , at)−

1

β
gπ(xt , at) + γEt,a

[
F πt+1(xt+1)

]]
(13)

Eq.(13) can be viewed as a soft probabilistic relaxation of the
Bellman optimality equation for the value function, with the KL
information cost penalty (11) as regularization controlled by the
inverse temperature β.
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G-function: an entropy-regularized Q-function

Define the state-action free energy function Gπ(x, a) as

Gπ
t (xt , at) = R̂t(xt , at) + γE

[
F πt+1(xt+1)

∣∣ xt , at

]
(14)

= Et,a

[
T∑

t′=t

γt
′−t
(
R̂t′(xt′ , at′)−

1

β
gπ(xt′ , at′)

)]

In the last equation we used the fact that the first action at in the
G-function is fixed, and hence gπ(xt , at) = 0 when we condition on
at = a.
Compare this expression with Eq.(12) to get a relation between the
G-function and F-function”:

F πt (xt) =
∑

at

π(at |xt)
[
Gπ
t (xt , at)−

1

β
log

π(at |xt)
π0(at |xt)

]
(15)
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Optimal policy

We obtained

F πt (xt) =
∑

at

π(at |xt)
[
Gπ
t (xt , at)−

1

β
log

π(at |xt)
π0(at |xt)

]
This is maximized by the following distribution: π(at |xt):

π(at |xt) =
1

Zt
π0(at |xt)eβG

π
t (xt ,at) (16)

Zt =
∑

at

π0(at |xt)eβG
π
t (xt ,at)
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Optimal free energy

The free energy (15) evaluated at the optimal solution (16):

Fπt (xt) =
1

β
logZt =

1

β
log
∑

at

π0(at |xt)eβG
π
t (xt ,at) (17)

Can use this to re-write the optimal policy:

π(at |xt) = π0(at |xt)eβ(Gπt (xt ,at)−Fπt (xt)) (18)
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Putting all together: G-learning

We now have a set of three equations that have to be solved
self-consistently for t = T − 1, . . . , 0:

Gπ
t (xt , at) = R̂t(xt , at) + γEt,a

[
F πt+1(xt+1)

∣∣ xt , at

]
F πt (xt) =

1

β
log
∑

at

π0(at |xt)eβG
π
t (xt ,at)

π(at |xt) = π0(at |xt)eβ(Gπt (xt ,at)−Fπt (xt)) (19)

with

Gπ
T (xT , aT ) = R̂T (xT , aT ) (20)

F πT (xT ) = Gπ
T (xT , aT ) = R̂T (xT , aT )
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G-learning with a quadratic reward
I For quadratic rewards, the general equations of G-learning can

be solved semi-analytically for Gaussian priors π0 with the
mean ût given by a linear function of the state:

π0(ut |xt) =
1√

(2π)N |Σ|
e−

1
2

(ut−ût)T Σ−1(ut−ût), ût := ūt+v̄txt

(21)
I We start by specifying a functional form of the value function

as a quadratic form of xt :

F πt (xt) = xTt F
(xx)
t xt + xTt F

(x)
t + F

(0)
t , (22)

where parameters F
(xx)
t , F

(x)
t , F

(0)
t can depend on time via

their dependence on P̂t+1 and r̄t .
I The dynamic equation takes the form2:

xt+1 = At (xt + ut)+(xt + ut)◦ε̃t , At := diag (1 + r̄t) , ε̃t := (0, εt)
(23)

2Note that the only features used here are the expected asset returns r̄t for the
current period t. We assume that the expected asset returns are available as an
output of a separate statistical model using e.g., a factor model framework.
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Putting it all together

I Coefficients of the value function (22) are computed backward
in time starting from the last maturity t = T − 1.

I For t = T − 1, the quadratic reward (3) can be optimized
analytically by the following action:

uT−1 = −1

2

[
R

(uu)
t

]−1 (
R

(u)
t + R

(ux)
t xT−1

)
:=

1

2
(MT−1xT−1 + KT−1)

(24)

where we defined

Mt := −
[
R

(uu)
t

]−1
R

(ux)
t , Kt := −

[
R

(uu)
t

]−1
R

(u)
t

I As for the last time step we have FπT−1(xT−1) = R̂T−1
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Optimal policy

I The optimal policy for the given step is given by

π(ut |xt) = π0(ut |xt)eβ(Gπt (xt ,ut)−Fπt (xt)). (25)

I Using the quadratic action-value function produces a new
Gaussian policy π(ut |xt):

π(ut |xt) =
1√

(2π)n
∣∣∣Σ̃p

∣∣∣e
− 1

2
(ut−ũt−ṽtxt)

T Σ̃−1
p (ut−ũt−ṽtxt) (26)

where Σ̃−1
p = Σ−1

p − 2βQ
(uu)
t , ũt = Σ̃p

(
Σ−1

p ūt + βQ
(u)
t

)
and

ṽt = Σ̃p

(
Σ−1

p v̄t + βQ
(ux)
t

)
.
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Optimal policy

I Therefore, policy optimization for G-learning with quadratic
rewards and Gaussian reference policy amounts to the
Bayesian update of the prior distribution with parameters
updates ūt , v̄t , Σp to the new values ũt , ṽt , Σ̃p.

I These quantities depend on time via their dependence on the
targets P̂t and expected asset returns r̄t .
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The final scheme: RL case

RL case: rewards are observed.

Initiate a trajectory (x̄
(0)
1 , ū

(0)
1 ), . . . , (x̄

(0)
T , ū

(0)
T )

Repeat until convergence:
For t = T − 1, . . . , 0:

1. Compute the expected value at time t of the F-function
at time t + 1

2. Use this value and observed rewards to update the
Q-function.

3. Compute the value of the F-function at time t.
4. Recompute the policy distribution π(ut |xt) by updating

its mean and variance
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Unobservable rewards: IRL

I Inverse Reinforcement Learning (IRL): states and actions are
observed, but rewards are not observed.

I IRL in our model is easy, as it amounts to Maximum
Likelihood:
The negative log-likelihood of data is

LL(θ) =
∑
t∈ζ

(
β (Gπ

t (xt ,ut)− F πt (xt))− 1

2
log |Σr | −

1

2
∆T

t Σ−1
r ∆t

)
,

(27)
where xt ,ut are observed optimal state-action sequences and

∆t :=
x

(r)
t+1

x
(r)
t +u

(r)
t

− A
(r)
t .

I All unknown parameters Θ = (λ, µi , β) can then be computed
using Gradient Descent or Stochastic Gradient Descent.

I This produces the GIRL (G-learning for IRL) algorithm (see
M.Dixon and IH 2021)
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T-REX algorithm for IRL
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Combined IRL-RL framework
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Convergence of the T-REX algorithm for IRL



30/32

Classification accuracy forT-REX
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Can T-REX outperform fund managers?
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Summary: IRL with RL for asset management
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